Recent advances in large-scale RNA sequencing and genome-wide profiling projects have unraveled a heterogeneous group of RNAs, collectively known as long noncoding RNAs (lncRNAs), which play central roles in many diverse biological processes. Importantly, an association between aberrant expression of lncRNAs and diverse human pathologies has been reported, including in a variety of kidney diseases. These observations have raised the possibility that lncRNAs may represent unexploited potential therapeutic targets for kidney diseases. Several important questions regarding the functionality of lncRNAs and their impact in kidney diseases, however, remain to be carefully addressed. Here, we provide an overview of the main functions and mechanisms of actions of lncRNAs, and their promise as therapeutic targets in kidney diseases, emphasizing on the role of some of the best-characterized lncRNAs implicated in the pathogenesis and progression of diabetic nephropathy.

1.
Ponting
CP
,
Oliver
PL
,
Reik
W
.
Evolution and functions of long noncoding RNAs
.
Cell
.
2009
;
136
(
4
):
629
41
. .
2.
Djebali
S
,
Davis
CA
,
Merkel
A
,
Dobin
A
,
Lassmann
T
,
Mortazavi
A
, et al.
Landscape of transcription in human cells
.
Nature
.
2012
;
489
(
7414
):
101
8
. .
3.
Dunham
I
,
Kundaje
A
,
Aldred
SF
,
Collins
PJ
,
Davis
CA
,
Doyle
F
, et al.
An integrated encyclopedia of DNA elements in the human genome
.
Nature
.
2012
;
489
(
7414
):
57
74
. .
4.
Derrien
T
,
Johnson
R
,
Bussotti
G
,
Tanzer
A
,
Djebali
S
,
Tilgner
H
, et al.
The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression
.
Genome Res
.
2012
;
22
(
9
):
1775
89
. .
5.
St Laurent
G
,
Wahlestedt
C
,
Kapranov
P
.
The landscape of long noncoding RNA classification
.
Trends Genet
.
2015
;
31
(
5
):
239
51
. .
6.
Zhao
Y
,
Li
H
,
Fang
S
,
Kang
Y
,
Wu
W
,
Hao
Y
, et al.
NONCODE 2016: an informative and valuable data source of long non-coding RNAs
.
Nucleic Acids Res
.
2016
;
44
(
D1
):
D203
8
. .
7.
Kopp
F
,
Mendell
JT
.
Functional classification and experimental dissection of long noncoding RNAs
.
Cell
.
2018
;
172
(
3
):
393
407
. .
8.
Ulitsky
I
,
Bartel
DP
.
lincRNAs: genomics, evolution, and mechanisms
.
Cell
.
2013
;
154
(
1
):
26
46
. .
9.
Kashi
K
,
Henderson
L
,
Bonetti
A
,
Carninci
P
.
Discovery and functional analysis of lncRNAs: methodologies to investigate an uncharacterized transcriptome
.
Biochim Biophys Acta
.
2016
;
1859
(
1
):
3
15
. .
10.
Mele
M
,
Mattioli
K
,
Mallard
W
,
Shechner
DM
,
Gerhardinger
C
,
Rinn
JL
.
Chromatin environment, transcriptional regulation, and splicing distinguish lincRNAs and mRNAs
.
Genome Res
.
2017
;
27
(
1
):
27
37
.
11.
Washietl
S
,
Kellis
M
,
Garber
M
.
Evolutionary dynamics and tissue specificity of human long noncoding RNAs in six mammals
.
Genome Res
.
2014
;
24
(
4
):
616
28
. .
12.
Wang
KC
,
Chang
HY
.
Molecular mechanisms of long noncoding RNAs
.
Mol Cell
.
2011
;
43
(
6
):
904
14
. .
13.
Guttman
M
,
Rinn
JL
.
Modular regulatory principles of large non-coding RNAs
.
Nature
.
2012
;
482
(
7385
):
339
46
. .
14.
Guttman
M
,
Amit
I
,
Garber
M
,
French
C
,
Lin
MF
,
Feldser
D
, et al.
Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals
.
Nature
.
2009
;
458
(
7235
):
223
7
. .
15.
Mongelli
A
,
Martelli
F
,
Farsetti
A
,
Gaetano
C
.
The dark that matters: long non-coding RNAs as master regulators of cellular metabolism in non-communicable diseases
.
Front Physiol
.
2019
;
10
:
369
. .
16.
Mercer
TR
,
Dinger
ME
,
Mattick
JS
.
Long non-coding RNAs: insights into functions
.
Nat Rev Genet
.
2009
;
10
(
3
):
155
9
. .
17.
Chu
C
,
Qu
K
,
Zhong
FL
,
Artandi
SE
,
Chang
HY
.
Genomic maps of long noncoding RNA occupancy reveal principles of RNA-chromatin interactions
.
Mol Cell
.
2011
;
44
(
4
):
667
78
. .
18.
Fernandes
J
,
Acuña
S
,
Aoki
J
,
Floeter-Winter
L
,
Muxel
S
.
Long non-coding RNAs in the regulation of gene expression: physiology and disease
.
ncRNA
.
2019
;
5
(
1
):
17
. .
19.
Khalil
AM
,
Guttman
M
,
Huarte
M
,
Garber
M
,
Raj
A
,
Rivea Morales
D
, et al.
Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression
.
Proc Natl Acad Sci U S A
.
2009
;
106
(
28
):
11667
72
. .
20.
Long
Y
,
Wang
X
,
Youmans
DT
,
Cech
TR
.
How do lncRNAs regulate transcription?
Sci Adv
.
2017
;
3
(
9
):
eaao2110
eaao
. .
21.
Yoon
JH
,
Abdelmohsen
K
,
Gorospe
M
.
Posttranscriptional gene regulation by long noncoding RNA
.
J Mol Biol
.
2013
;
425
(
19
):
3723
30
. .
22.
Quinn
JJ
,
Chang
HY
.
Unique features of long non-coding RNA biogenesis and function
.
Nat Rev Genet
.
2016
;
17
(
1
):
47
62
. .
23.
Rinn
JL
,
Chang
HY
.
Genome regulation by long noncoding RNAs
.
Annu Rev Biochem
.
2012
;
81
:
145
66
. .
24.
Choi
SW
,
Kim
HW
,
Nam
JW
.
The small peptide world in long noncoding RNAs
.
Brief Bioinform
.
2019
;
20
(
5
):
1853
64
. .
25.
Dinger
ME
,
Pang
KC
,
Mercer
TR
,
Mattick
JS
.
Differentiating protein-coding and noncoding RNA: challenges and ambiguities
.
PLoS Comput Biol
.
2008
;
4
(
11
):
e1000176
e
. .
26.
Kondo
T
,
Hashimoto
Y
,
Kato
K
,
Inagaki
S
,
Hayashi
S
,
Kageyama
Y
.
Small peptide regulators of actin-based cell morphogenesis encoded by a polycistronic mRNA
.
Nat Cell Biol
.
2007
;
9
(
6
):
660
5
. .
27.
Röhrig
H
,
Schmidt
J
,
Miklashevichs
E
,
Schell
J
,
John
M
.
Soybean ENOD40 encodes two peptides that bind to sucrose synthase
.
Proc Natl Acad Sci U S A
.
2002
;
99
(
4
):
1915
20
. .
28.
Allen
DG
,
Gervasio
OL
,
Yeung
EW
,
Whitehead
NP
.
Calcium and the damage pathways in muscular dystrophy
.
Can J Physiol Pharmacol
.
2010
;
88
(
2
):
83
91
. .
29.
Anderson
DM
,
Anderson
KM
,
Chang
CL
,
Makarewich
CA
,
Nelson
BR
,
McAnally
JR
, et al.
A micropeptide encoded by a putative long noncoding RNA regulates muscle performance
.
Cell
.
2015
;
160
(
4
):
595
606
. .
30.
Kageyama
Y
,
Kondo
T
,
Hashimoto
Y
.
Coding vs. non-coding: translatability of short ORFs found in putative non-coding transcripts
.
Biochimie
.
2011
;
93
(
11
):
1981
6
. .
31.
Odermatt
A
,
Taschner
PE
,
Scherer
SW
,
Beatty
B
,
Khanna
VK
,
Cornblath
DR
, et al.
Characterization of the gene encoding human sarcolipin (SLN), a proteolipid associated with SERCA1: absence of structural mutations in five patients with Brody disease
.
Genomics
.
1997
;
45
(
3
):
541
53
. .
32.
Stein
CS
,
Jadiya
P
,
Zhang
X
,
McLendon
JM
,
Abouassaly
GM
,
Witmer
NH
, et al.
Mitoregulin: a lncRNA-encoded microprotein that supports mitochondrial supercomplexes and respiratory efficiency
.
Cell Rep
.
2018
;
23
(
13
):
3710
e8
. .
33.
Makarewich
CA
,
Baskin
KK
,
Munir
AZ
,
Bezprozvannaya
S
,
Sharma
G
,
Khemtong
C
, et al.
MOXI is a mitochondrial micropeptide that enhances fatty acid β-oxidation
.
Cell Rep
.
2018
;
23
(
13
):
3701
9
. .
34.
Chugunova
A
,
Loseva
E
,
Mazin
P
,
Mitina
A
,
Navalayeu
T
,
Bilan
D
, et al.
LINC00116 codes for a mitochondrial peptide linking respiration and lipid metabolism
.
Proc Natl Acad Sci U S A
.
2019
;
116
(
11
):
4940
5
. .
35.
Cao
H
,
Wahlestedt
C
,
Kapranov
P
.
Strategies to annotate and characterize long noncoding RNAs: advantages and pitfalls
.
Trends Genet
.
2018
;
34
(
9
):
704
21
. .
36.
Liu
SJ
,
Horlbeck
MA
,
Cho
SW
,
Birk
HS
,
Malatesta
M
,
He
D
, et al.
CRISPRi-based genome-scale identification of functional long noncoding RNA loci in human cells
.
Science
.
2017
;
355
(
6320
):
eaah7111
. .
37.
Fazal
FM
,
Han
S
,
Parker
KR
,
Kaewsapsak
P
,
Xu
J
,
Boettiger
AN
, et al.
Atlas of subcellular RNA localization revealed by APEX-Seq
.
Cell
.
2019
;
178
(
2
):
473
e26
. .
38.
Imamura
K
,
Imamachi
N
,
Akizuki
G
,
Kumakura
M
,
Kawaguchi
A
,
Nagata
K
, et al.
Long noncoding RNA NEAT1-dependent SFPQ relocation from promoter region to paraspeckle mediates IL8 expression upon immune stimuli
.
Mol Cell
.
2014
;
53
(
3
):
393
406
. .
39.
Yu
TM
,
Palanisamy
K
,
Sun
KT
,
Day
YJ
,
Shu
KH
,
Wang
IK
, et al.
RANTES mediates kidney ischemia reperfusion injury through a possible role of HIF-1α and LncRNA PRINS
.
Sci Rep
.
2016
;
6
:
18424
. .
40.
Wang
P
,
Luo
ML
,
Song
E
,
Zhou
Z
,
Ma
T
,
Wang
J
, et al.
Long noncoding RNA lnc-TSI inhibits renal fibrogenesis by negatively regulating the TGF-β/Smad3 pathway
.
Sci Transl Med
.
2018
;
10
(
462
):
eaat2039
. .
41.
Wu
Y
,
Liu
J
,
Zheng
Y
,
You
L
,
Kuang
D
,
Liu
T
.
Suppressed expression of long non-coding RNA HOTAIR inhibits proliferation and tumourigenicity of renal carcinoma cells
.
Tumour Biol
.
2014
;
35
(
12
):
11887
94
. .
42.
Xiao
ZD
,
Han
L
,
Lee
H
,
Zhuang
L
,
Zhang
Y
,
Baddour
J
, et al.
Energy stress-induced lncRNA FILNC1 represses c-Myc-mediated energy metabolism and inhibits renal tumor development
.
Nat Commun
.
2017
;
8
(
1
):
783
. .
43.
Wu
Y
,
Wang
YQ
,
Weng
WW
,
Zhang
QY
,
Yang
XQ
,
Gan
HL
, et al.
A serum-circulating long noncoding RNA signature can discriminate between patients with clear cell renal cell carcinoma and healthy controls
.
Oncogenesis
.
2016
;
5
:
e192
. .
44.
Alicic
RZ
,
Rooney
MT
,
Tuttle
KR
.
Diabetic kidney disease: challenges, progress, and possibilities
.
Clin J Am Soc Nephrol
.
2017
;
12
(
12
):
2032
45
. .
45.
Ritz
E
,
Orth
SR
.
Nephropathy in patients with type 2 diabetes mellitus
.
N Engl J Med
.
1999
;
341
(
15
):
1127
33
. .
46.
Long
J
,
Badal
SS
,
Ye
Z
,
Wang
Y
,
Ayanga
BA
,
Galvan
DL
, et al.
Long noncoding RNA Tug1 regulates mitochondrial bioenergetics in diabetic nephropathy
.
J Clin Invest
.
2016
;
126
(
11
):
4205
18
. .
47.
Reichelt-Wurm
S
,
Wirtz
T
,
Chittka
D
,
Lindenmeyer
M
,
Reichelt
RM
,
Beck
S
, et al.
Glomerular expression pattern of long non-coding RNAs in the type 2 diabetes mellitus BTBR mouse model
.
Sci Rep
.
2019
;
9
(
1
):
9765
. .
48.
Shang
J
,
Wang
S
,
Jiang
Y
,
Duan
Y
,
Cheng
G
,
Liu
D
, et al.
Identification of key lncRNAs contributing to diabetic nephropathy by gene co-expression network analysis
.
Sci Rep
.
2019
;
9
(
1
):
3328
. .
49.
Wen
L
,
Zhang
Z
,
Peng
R
,
Zhang
L
,
Liu
H
,
Peng
H
, et al.
Whole transcriptome analysis of diabetic nephropathy in the db/db mouse model of type 2 diabetes
.
J Cell Biochem
.
2019
;
120
(
10
):
17520
33
. .
50.
Li
SY
,
Susztak
K
.
The long noncoding RNA Tug1 connects metabolic changes with kidney disease in podocytes
.
J Clin Invest
.
2016
;
126
(
11
):
4072
5
. .
51.
Sun
SF
,
Tang
PMK
,
Feng
M
,
Xiao
J
,
Huang
XR
,
Li
P
, et al.
Novel lncRNA Erbb4-IR promotes diabetic kidney injury in db/db mice by targeting miR-29b
.
Diabetes
.
2018
;
67
(
4
):
731
44
. .
52.
Wang
B
,
Komers
R
,
Carew
R
,
Winbanks
CE
,
Xu
B
,
Herman-Edelstein
M
, et al.
Suppression of microRNA-29 expression by TGF-β1 promotes collagen expression and renal fibrosis
.
J Am Soc Nephrol
.
2012
;
23
(
2
):
252
65
. .
53.
Long
J
,
Danesh
FR
.
Values and limitations of targeting lncRNAs in diabetic nephropathy
.
Diabetes
.
2018
;
67
(
4
):
552
3
. .
54.
Li
J
,
Jiang
X
,
Duan
L
,
Wang
W
.
Long non-coding RNA MEG3 impacts diabetic nephropathy progression through sponging miR-145
.
Am J Transl Res
.
2019
;
11
(
10
):
6691
8
..
55.
Al-Rugeebah
A
,
Alanazi
M
,
Parine
NR
.
MEG3: an oncogenic long non-coding RNA in different cancers
.
Pathol Oncol Res
.
2019
;
25
(
3
):
859
74
. .
56.
Sathishkumar
C
,
Prabu
P
,
Mohan
V
,
Balasubramanyam
M
.
Linking a role of lncRNAs (long non-coding RNAs) with insulin resistance, accelerated senescence, and inflammation in patients with type 2 diabetes
.
Hum Genomics
.
2018
;
12
(
1
):
41
. .
57.
Zha
F
,
Qu
X
,
Tang
B
,
Li
J
,
Wang
Y
,
Zheng
P
, et al.
Long non-coding RNA MEG3 promotes fibrosis and inflammatory response in diabetic nephropathy via miR-181a/Egr-1/TLR4 axis
.
Aging
.
2019
;
11
(
11
):
3716
30
. .
58.
Ge
X
,
Xu
B
,
Xu
W
,
Xia
L
,
Xu
Z
,
Shen
L
, et al.
Long noncoding RNA GAS5 inhibits cell proliferation and fibrosis in diabetic nephropathy by sponging miR-221 and modulating SIRT1 expression
.
Aging
.
2019
;
11
(
20
):
8745
59
. .
59.
Bible
E
.
Diabetic nephropathy: Sirt1 attenuates diabetic albuminuria
.
Nat Rev Nephrol
.
2013
;
9
(
12
):
696
. .
60.
Zhang
L
,
Zhao
S
,
Zhu
Y
.
Long noncoding RNA growth arrest-specific transcript 5 alleviates renal fibrosis in diabetic nephropathy by downregulating matrix metalloproteinase 9 through recruitment of enhancer of zeste homolog 2
.
FASEB J
.
2020
;
34
(
2
):
2703
14
. .
61.
Yang
J
,
Shen
Y
,
Yang
X
,
Long
Y
,
Chen
S
,
Lin
X
, et al.
Silencing of long noncoding RNA XIST protects against renal interstitial fibrosis in diabetic nephropathy via microRNA-93-5p-mediated inhibition of CDKN1A
.
Am J Physiol Renal Physiol
.
2019
;
317
(
5
):
F1350
F8
. .
62.
Long
J
,
Wang
Y
,
Wang
W
,
Chang
BH
,
Danesh
FR
.
Identification of microRNA-93 as a novel regulator of vascular endothelial growth factor in hyperglycemic conditions
.
J Biol Chem
.
2010
;
285
(
30
):
23457
65
. .
63.
Badal
SS
,
Wang
Y
,
Long
J
,
Corcoran
DL
,
Chang
BH
,
Truong
LD
, et al.
miR-93 regulates Msk2-mediated chromatin remodelling in diabetic nephropathy
.
Nat Commun
.
2016
;
7
(
1
):
12076
. .
64.
Kato
M
,
Wang
M
,
Chen
Z
,
Bhatt
K
,
Oh
HJ
,
Lanting
L
, et al.
An endoplasmic reticulum stress-regulated lncRNA hosting a microRNA megacluster induces early features of diabetic nephropathy
.
Nat Commun
.
2016
;
7
:
12864
. .
65.
Guo
K
,
Lu
J
,
Huang
Y
,
Wu
M
,
Zhang
L
,
Yu
H
, et al.
Protective role of PGC-1α in diabetic nephropathy is associated with the inhibition of ROS through mitochondrial dynamic remodeling
.
PLoS One
.
2015
;
10
(
4
):
e0125176
. .
66.
Kang
HM
,
Ahn
SH
,
Choi
P
,
Ko
YA
,
Han
SH
,
Chinga
F
, et al.
Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development
.
Nat Med
.
2015
;
21
(
1
):
37
46
. .
67.
Sharma
K
,
Karl
B
,
Mathew
AV
,
Gangoiti
JA
,
Wassel
CL
,
Saito
R
, et al.
Metabolomics reveals signature of mitochondrial dysfunction in diabetic kidney disease
.
J Am Soc Nephrol
.
2013
;
24
(
11
):
1901
12
. .
68.
Young
TL
,
Matsuda
T
,
Cepko
CL
.
The noncoding RNA taurine upregulated gene 1 is required for differentiation of the murine retina
.
Curr Biol
.
2005
;
15
(
6
):
501
12
. .
69.
Shen
H
,
Ming
Y
,
Xu
C
,
Xu
Y
,
Zhao
S
,
Zhang
Q
.
Deregulation of long noncoding RNA (TUG1) contributes to excessive podocytes apoptosis by activating endoplasmic reticulum stress in the development of diabetic nephropathy
.
J Cell Physiol
.
2019
;
234
(
9
):
15123
33
. .
70.
Li
Y
,
Huang
D
,
Zheng
L
,
Cao
H
,
Gao
Y
,
Yang
Y
, et al.
Long non-coding RNA TUG1 alleviates high glucose induced podocyte inflammation, fibrosis and apoptosis in diabetic nephropathy: via targeting the miR-27a-3p/E2F3 axis
.
RSC Adv
.
2019
;
9
(
64
):
37620
9
.
71.
Hu
M
,
Wang
R
,
Li
X
,
Fan
M
,
Lin
J
,
Zhen
J
, et al.
LncRNA MALAT1 is dysregulated in diabetic nephropathy and involved in high glucose-induced podocyte injury via its interplay with β-catenin
.
J Cell Mol Med
.
2017
;
21
(
11
):
2732
47
. .
72.
Li
X
,
Zeng
L
,
Cao
C
,
Lu
C
,
Lian
W
,
Han
J
, et al.
Long noncoding RNA MALAT1 regulates renal tubular epithelial pyroptosis by modulated miR-23c targeting of ELAVL1 in diabetic nephropathy
.
Exp Cell Res
.
2017
;
350
(
2
):
327
35
. .
73.
Gödel
M
,
Hartleben
B
,
Herbach
N
,
Liu
S
,
Zschiedrich
S
,
Lu
S
, et al.
Role of mTOR in podocyte function and diabetic nephropathy in humans and mice
.
J Clin Invest
.
2011
;
121
(
6
):
2197
209
. .
74.
Huang
S
,
Xu
Y
,
Ge
X
,
Xu
B
,
Peng
W
,
Jiang
X
, et al.
Long noncoding RNA NEAT1 accelerates the proliferation and fibrosis in diabetic nephropathy through activating Akt/mTOR signaling pathway
.
J Cell Physiol
.
2019
;
234
(
7
):
11200
7
. .
75.
Lei
J
,
Zhao
L
,
Zhang
Y
,
Wu
Y
,
Liu
Y
.
High glucose-induced podocyte injury involves activation of mammalian target of rapamycin (mTOR)-induced endoplasmic reticulum (ER) stress
.
Cell Physiol Biochem
.
2018
;
45
(
6
):
2431
43
. .
76.
Wang
X
,
Xu
Y
,
Zhu
YC
,
Wang
YK
,
Li
J
,
Li
XY
, et al.
LncRNA NEAT1 promotes extracellular matrix accumulation and epithelial-to-mesenchymal transition by targeting miR-27b-3p and ZEB1 in diabetic nephropathy
.
J Cell Physiol
.
2019
;
234
(
8
):
12926
33
. .
77.
Alshalalfa
M
,
Verhaegh
GW
,
Gibb
EA
,
Santiago-Jiménez
M
,
Erho
N
,
Jordan
J
, et al.
Low PCA3 expression is a marker of poor differentiation in localized prostate tumors: exploratory analysis from 12,076 patients
.
Oncotarget
.
2017
;
8
(
31
):
50804
13
. .
78.
Kumarswamy
R
,
Bauters
C
,
Volkmann
I
,
Maury
F
,
Fetisch
J
,
Holzmann
A
, et al.
Circulating long noncoding RNA, LIPCAR, predicts survival in patients with heart failure
.
Circ Res
.
2014
;
114
(
10
):
1569
75
. .
79.
Salazar-Torres
FJ
,
Medina-Perez
M
,
Melo
Z
,
Mendoza-Cerpa
C
,
Echavarria
R
.
Urinary expression of long non-coding RNA TUG1 in non-diabetic patients with glomerulonephritides
.
Biomed Rep
.
2021
;
14
(
1
):
17
. .
80.
Li
X
,
Zhao
Z
,
Gao
C
,
Rao
L
,
Hao
P
,
Jian
D
, et al.
The diagnostic value of whole blood lncRNA ENST00000550337.1 for pre-diabetes and type 2 diabetes mellitus
.
Exp Clin Endocrinol Diabetes
.
2017
;
125
(
6
):
377
83
. .
81.
Yang
Y
,
Lv
X
,
Fan
Q
,
Wang
X
,
Xu
L
,
Lu
X
, et al.
Analysis of circulating lncRNA expression profiles in patients with diabetes mellitus and diabetic nephropathy: differential expression profile of circulating lncRNA
.
Clin Nephrol
.
2019
;
92
(
1
):
25
35
.
82.
Arun
G
,
Diermeier
SD
,
Spector
DL
.
Therapeutic targeting of long non-coding RNAs in cancer
.
Trends Mol Med
.
2018
;
24
(
3
):
257
77
. .
83.
Huang
CK
,
Kafert-Kasting
S
,
Thum
T
.
Preclinical and clinical development of noncoding RNA therapeutics for cardiovascular disease
.
Circ Res
.
2020
;
126
(
5
):
663
78
. .
84.
Li
DY
,
Busch
A
,
Jin
H
,
Chernogubova
E
,
Pelisek
J
,
Karlsson
J
, et al.
H19 induces abdominal aortic aneurysm development and progression
.
Circulation
.
2018
;
138
(
15
):
1551
68
. .
85.
Esposito
R
,
Bosch
N
,
Lanzós
A
,
Polidori
T
,
Pulido-Quetglas
C
,
Johnson
R
.
Hacking the cancer genome: profiling therapeutically actionable long non-coding RNAs using CRISPR-Cas9 screening
.
Cancer Cell
.
2019
;
35
(
4
):
545
57
. .
86.
Liu
Y
,
Cao
Z
,
Wang
Y
,
Guo
Y
,
Xu
P
,
Yuan
P
, et al.
Genome-wide screening for functional long noncoding RNAs in human cells by Cas9 targeting of splice sites
.
Nat Biotechnol
.
2018
.
87.
Horlbeck
MA
,
Liu
SJ
,
Chang
HY
,
Lim
DA
,
Weissman
JS
.
Fitness effects of CRISPR/Cas9-targeting of long noncoding RNA genes
.
Nat Biotechnol
.
2020
;
38
(
5
):
573
6
. .
88.
Liu
Y
,
Liu
Z
,
Cao
Z
,
Wei
W
.
Reply to: fitness effects of CRISPR/Cas9-targeting of long noncoding RNA genes
.
Nat Biotechnol
.
2020
;
38
(
5
):
577
8
. .
89.
Cruz
NM
,
Freedman
BS
.
CRISPR gene editing in the kidney
.
Am J Kidney Dis
.
2018
;
71
(
6
):
874
83
.
90.
Zhao
Y
,
Teng
H
,
Yao
F
,
Yap
S
,
Sun
Y
,
Ma
L
.
Challenges and strategies in ascribing functions to long noncoding RNAs
.
Cancers
.
2020
;
12
(
6
):
1458
.
91.
Majumder
S
,
Hadden
MJ
,
Thieme
K
,
Batchu
SN
,
Niveditha
D
,
Chowdhury
S
, et al.
Dysregulated expression but redundant function of the long non-coding RNA HOTAIR in diabetic kidney disease
.
Diabetologia
.
2019
;
62
(
11
):
2129
42
. .
92.
Ji
TT
,
Wang
YK
,
Zhu
YC
,
Gao
CP
,
Li
XY
,
Li
J
, et al.
Long noncoding RNA Gm6135 functions as a competitive endogenous RNA to regulate toll-like receptor 4 expression by sponging miR-203-3p in diabetic nephropathy
.
J Cell Physiol
.
2019
;
234
(
5
):
6633
41
. .
93.
Chen
W
,
Peng
R
,
Sun
Y
,
Liu
H
,
Zhang
L
,
Peng
H
, et al.
The topological key lncRNA H2k2 from the ceRNA network promotes mesangial cell proliferation in diabetic nephropathy via the miR-449a/b/Trim11/Mek signaling pathway
.
FASEB J
.
2019
;
33
(
10
):
11492
506
. .
94.
Wang
J
,
Pan
J
,
Li
H
,
Long
J
,
Fang
F
,
Chen
J
, et al.
lncRNA ZEB1-AS1 was suppressed by p53 for renal fibrosis in diabetic nephropathy
.
Mol Ther Nucleic Acids
.
2018
;
12
:
741
50
. .
95.
Wang
M
,
Wang
S
,
Yao
D
,
Yan
Q
,
Lu
W
.
A novel long non-coding RNA CYP4B1-PS1-001 regulates proliferation and fibrosis in diabetic nephropathy
.
Mol Cell Endocrinol
.
2016
;
426
:
136
45
. .
96.
Wang
S
,
Chen
X
,
Wang
M
,
Yao
D
,
Chen
T
,
Yan
Q
, et al.
Long non-coding RNA CYP4B1-PS1-001 inhibits proliferation and fibrosis in diabetic nephropathy by interacting with nucleolin
.
Cell Physiol Biochem
.
2018
;
49
(
6
):
2174
87
. .
97.
Wang
M
,
Yao
D
,
Wang
S
,
Yan
Q
,
Lu
W
.
Long non-coding RNA ENSMUST00000147869 protects mesangial cells from proliferation and fibrosis induced by diabetic nephropathy
.
Endocrine
.
2016
;
54
(
1
):
81
92
. .
98.
Peng
W
,
Huang
S
,
Shen
L
,
Tang
Y
,
Li
H
,
Shi
Y
.
Long noncoding RNA NONHSAG053901 promotes diabetic nephropathy via stimulating Egr-1/TGF-β-mediated renal inflammation
.
J Cell Physiol
.
2019
;
234
(
10
):
18492
503
. .
99.
Zhang
P
,
Sun
Y
,
Peng
R
,
Chen
W
,
Fu
X
,
Zhang
L
, et al.
Long non-coding RNA Rpph1 promotes inflammation and proliferation of mesangial cells in diabetic nephropathy via an interaction with Gal-3
.
Cell Death Dis
.
2019
;
10
(
7
):
526
. .
100.
Zhang
YY
,
Tang
PM
,
Tang
PC
,
Xiao
J
,
Huang
XR
,
Yu
C
, et al.
LRNA9884, a novel Smad3-dependent long noncoding RNA, promotes diabetic kidney injury in db/db mice via enhancing MCP-1-dependent renal inflammation
.
Diabetes
.
2019
;
68
(
7
):
1485
. .
101.
Xu
J
,
Deng
Y
,
Wang
Y
,
Sun
X
,
Chen
S
,
Fu
G
.
SPAG5-AS1 inhibited autophagy and aggravated apoptosis of podocytes via SPAG5/AKT/mTOR pathway
.
Cell Prolif
.
2020
;
53
(
2
):
e12738
. .
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.