Cardiovascular disease is prevalent in patients with chronic kidney disease (CKD) and responsible for approximately half of all CKD-related deaths. Unfortunately, the presence of CKD can lead to a challenging interpretation of cardiac biomarkers essential in accurate diagnosis and prompt management of heart failure and acute coronary syndrome. There is growing interest in novel cardiac biomarkers that may improve diagnostic accuracy reflecting myocardial injury, inflammation, and remodeling. Interpretation of these biomarkers in CKD can be complicated, since elevated levels may not reflect myocardial injury or wall tension but rather decreased urinary clearance with retention of solutes and/or overall CKD-associated chronic inflammation. In this review, we discuss the latest data on major and emerging cardiac biomarkers including B-type natriuretic peptide, troponin, suppression of tumorigenicity 2, growth and differentiation factor-15, galectin-3, and matrix gla protein, and their diagnostic and prognostic utility in the CKD population.

1.
Freda BJ, Tang WH, Van Lente F, Peacock WF, Francis GS: Cardiac troponins in renal insufficiency: review and clinical implications. J Am Coll Cardiol 2002; 40: 2065–2071.
2.
Twerenbold R, Badertscher P, Boeddinghaus J, Nestelberger T, Wildi K, Puelacher C, et al: 0/1-hour triage algorithm for myocardial infarction in patients with renal dysfunction. Circulation 2018; 137: 436–451.
3.
Apple FS, Wu AH, Jaffe AS: European Society of Cardiology and American College of Cardiology guidelines for redefinition of myocardial infarction: how to use existing assays clinically and for clinical trials. Am Heart J 2002; 144: 981–986.
4.
Newby LK, Jesse RL, Babb JD, Christenson RH, De Fer TM, Diamond GA, et al: ACCF 2012 expert consensus document on practical clinical considerations in the interpretation of troponin elevations: a report of the American College of Cardiology Foundation task force on Clinical Expert Consensus Documents. J Am Coll Cardiol 2012; 60: 2427–2463.
5.
Ooi DS, Isotalo PA, Veinot JP: Correlation of antemortem serum creatine kinase, creatine kinase-MB, troponin I, and troponin T with cardiac pathology. Clin Chem 2000; 46: 338–344.
6.
Mishra RK, Li Y, DeFilippi C, Fischer MJ, Yang W, Keane M, et al: Association of cardiac troponin T with left ventricular structure and function in CKD. Am J Kidney Dis 2013; 61: 701–709.
7.
Fridén V, Starnberg K, Muslimovic A, Ricksten SE, Bjurman C, Forsgard N, et al: Clearance of cardiac troponin T with and without kidney function. Clin Biochem. 2017; 50: 468–474.
8.
Lamb EJ, Kenny C, Abbas NA, John RI, Webb MC, Price CP, et al: Cardiac troponin I concentration is commonly increased in nondialysis patients with CKD: experience with a sensitive assay. Am J Kidney Dis 2007; 49: 507–516.
9.
Gunsolus I, Sandoval Y, Smith SW, Sexter A, Schulz K, Herzog CA, et al: Renal dysfunction influences the diagnostic and prognostic performance of high-sensitivity cardiac troponin I. J Am Soc Nephrol. 2018; 29: 636–643.
10.
Wu AH, Jaffe AS, Apple FS, Jesse RL, Francis GL, Morrow DA, et al: National Academy of Clinical Biochemistry laboratory medicine practice guidelines: use of cardiac troponin and B-type natriuretic peptide or N-terminal proB-type natriuretic peptide for etiologies other than acute coronary syndromes and heart failure. Clin Chem 2007; 53: 2086–2096.
11.
Stacy SR, Suarez-Cuervo C, Berger Z, Wilson LM, Yeh HC, Bass EB, et al: Role of troponin in patients with chronic kidney disease and suspected acute coronary syndrome: a systematic review. Ann Intern Med 2014; 161: 502–512.
12.
Gregg LP, Adams-Huet B, Li X, Colbert G, Jain N, de Lemos JA, et al: Effect modification of chronic kidney disease on the association of circulating and imaging cardiac biomarkers with outcomes. J Am Heart Assoc 2017; 6:pii:e005235.
13.
Levin ER, Gardner DG, Samson WK: Natriuretic peptides. N Engl J Med 1998; 339: 321–328.
14.
Thygesen K, Mair J, Mueller C, Huber K, Weber M, Plebani M, et al: Recommendations for the use of natriuretic peptides in acute cardiac care: a position statement from the Study Group on Biomarkers in Cardiology of the ESC Working Group on Acute Cardiac Care. Eur Heart J 2012; 33: 2001–2006.
15.
Maisel AS, Krishnaswamy P, Nowak RM, McCord J, Hollander JE, Duc P, et al: Rapid measurement of B-type natriuretic peptide in the emergency diagnosis of heart failure. N Engl J Med 2002; 347: 161–167.
16.
Dickstein K, Cohen-Solal A, Filippatos G, McMurray JJ, Ponikowski P, Poole-Wilson PA, et al: ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2008: the Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2008 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association of the ESC (HFA) and endorsed by the European Society of Intensive Care Medicine (ESICM). Eur Heart J 2008; 29: 2388–2442.
17.
Januzzi JL, Camargo CA, Anwaruddin S, Baggish AL, Chen AA, Krauser DG, et al: The N-terminal Pro-BNP investigation of dyspnea in the emergency department (PRIDE) study. Am J Cardiol 2005; 95: 948–954.
18.
Januzzi JL, van Kimmenade R, Lainchbury J, Bayes-Genis A, Ordonez-Llanos J, Santalo-Bel M, et al: NT-proBNP testing for diagnosis and short-term prognosis in acute destabilized heart failure: an international pooled analysis of 1256 patients: the International Collaborative of NT-proBNP Study. Eur Heart J 2006; 27: 330–337.
19.
Chenevier-Gobeaux C, Claessens YE, Voyer S, Desmoulins D, Ekindjian OG: Influence of renal function on N-terminal pro-brain natriuretic peptide (NT-proBNP) in patients admitted for dyspnoea in the Emergency Department: comparison with brain natriuretic peptide (BNP). Clin Chim Acta 2005; 361: 167–175.
20.
DeFilippi C, van Kimmenade RR, Pinto YM: Amino-terminal pro-B-type natriuretic peptide testing in renal disease. Am J Cardiol 2008; 101: 82–88.
21.
Nishikimi T, Futoo Y, Tamano K, Takahashi M, Suzuki T, Minami J, et al: Plasma brain natriuretic peptide levels in chronic hemodialysis patients: influence of coronary artery disease. Am J Kidney Dis 2001; 37: 1201–1208.
22.
Fonarow GC, Peacock WF, Phillips CO, Givertz MM, Lopatin M; DHERE Scientific Advisory Committee and Investigators: Admission B-type natriuretic peptide levels and in-hospital mortality in acute decompensated heart failure. J Am Coll Cardiol 2007; 49: 1943–1950.
23.
Januzzi JL, Sakhuja R, O'donoghue M, Baggish AL, Anwaruddin S, Chae CU, et al: Utility of amino-terminal pro-brain natriuretic peptide testing for prediction of 1-year mortality in patients with dyspnea treated in the emergency department. Arch Intern Med 2006; 166: 315–320.
24.
Masson S, Latini R, Anand IS, Barlera S, Angelici L, Vago T, et al: Prognostic value of changes in N-terminal pro-brain natriuretic peptide in Val-HeFT (Valsartan Heart Failure Trial). J Am Coll Cardiol 2008; 52: 997–1003.
25.
Cheng YJ, Yao FJ, Liu LJ, Tang K, Lin XX, Li WJ, et al: B-type natriuretic peptide and prognosis of end-stage renal disease: a meta-analysis. PLoS One 2013; 8:e79302.
26.
O’Connor CM, Starling RC, Hernandez AF, Armstrong PW, Dickstein K, Hasselblad V, et al: Effect of nesiritide in patients with acute decompensated heart failure. N Engl J Med 2011; 365: 32–43.
27.
Shimpo M, Morrow DA, Weinberg EO, Sabatine MS, Murphy SA, Antman EM, et al: Serum levels of the interleukin-1 receptor family member ST2 predict mortality and clinical outcome in acute myocardial infarction. Circulation 2004; 109: 2186–2190.
28.
Rehman SU, Mueller T, Januzzi JL: Characteristics of the novel interleukin family biomarker ST2 in patients with acute heart failure. J Am Coll Cardiol 2008; 52: 1458–1465.
29.
Sanada S, Hakuno D, Higgins LJ, Schreiter ER, McKenzie AN, Lee RT: IL-33 and ST2 comprise a critical biomechanically induced and cardioprotective signaling system. J Clin Invest 2007; 117: 1538–1549.
30.
Ciccone MM, Cortese F, Gesualdo M, Riccardi R, Di Nunzio D, Moncelli M, et al: A novel cardiac bio-marker: ST2:a review. Molecules 2013; 18: 15314–15328.
31.
Bao YS, Na SP, Zhang P, Jia XB, Liu RC, Yu CY, et al: Characterization of interleukin-33 and soluble ST2 in serum and their association with disease severity in patients with chronic kidney disease. J Clin Immunol 2012; 32: 587–594.
32.
Kim MS, Jeong TD, Han SB, Min WK, Kim JJ: Role of soluble ST2 as a prognostic marker in patients with acute heart failure and renal insufficiency. J Korean Med Sci 2015; 30: 569–575.
33.
Tuegel C, Katz R, Alam M, Bhat Z, Bellovich K, de Boer I, et al: GDF-15, galectin 3, soluble ST2, and risk of mortality and cardiovascular events in CKD. Am J Kidney Dis 2018; 72: 519–528.
34.
Zhang R, Zhang Y, An T, Guo X, Yin S, Wang Y, et al: Prognostic value of sST2 and galectin-3 for death relative to renal function in patients hospitalized for heart failure. Biomark Med 2015; 9: 433–441.
35.
Bayes-Genis A, Zamora E, de Antonio M, Galán A, Vila J, Urrutia A, et al: Soluble ST2 serum concentration and renal function in heart failure. J Card Fail 2013; 19: 768–775.
36.
Obokata M, Sunaga H, Ishida H, Ito K, Ogawa T, Ando Y, et al: Independent and incremental prognostic value of novel cardiac biomarkers in chronic hemodialysis patients. Am Heart J 2016; 179: 29–41.
37.
Kempf T, Eden M, Strelau J, Naguib M, Willenbockel C, Tongers J, et al: The transforming growth factor-beta superfamily member growth-differentiation factor-15 protects the heart from ischemia/reperfusion injury. Circ Res 2006; 98: 351–360.
38.
Xu J, Kimball TR, Lorenz JN, Brown DA, Bauskin AR, Klevitsky R, et al: GDF15/MIC-1 functions as a protective and antihypertrophic factor released from the myocardium in association with SMAD protein activation. Circ Res 2006; 98: 342–350.
39.
Anand IS, Kempf T, Rector TS, Tapken H, Allhoff T, Jantzen F, et al: Serial measurement of growth-differentiation factor-15 in heart failure: relation to disease severity and prognosis in the Valsartan Heart Failure Trial. Circulation 2010; 122: 1387–1395.
40.
Kempf T, von Haehling S, Peter T, Allhoff T, Cicoira M, Doehner W, et al: Prognostic utility of growth differentiation factor-15 in patients with chronic heart failure. J Am Coll Cardiol 2007; 50: 1054–1060.
41.
Zimmers TA, Jin X, Hsiao EC, McGrath SA, Esquela AF, Koniaris LG: Growth differentiation factor-15/macrophage inhibitory cytokine-1 induction after kidney and lung injury. Shock 2005; 23: 543–548.
42.
Breit SN, Carrero JJ, Tsai VW, Yagoutifam N, Luo W, Kuffner T, et al: Macrophage inhibitory cytokine-1 (MIC-1/GDF15) and mortality in end-stage renal disease. Nephrol Dial Transplant 2012; 27: 70–75.
43.
de Boer RA, Daniels LB, Maisel AS, Januzzi JL: State of the art: newer biomarkers in heart failure. Eur J Heart Fail 2015; 17: 559–569.
44.
Henderson NC, Mackinnon AC, Farnworth SL, Kipari T, Haslett C, Iredale JP, et al: Galectin-3 expression and secretion links macrophages to the promotion of renal fibrosis. Am J Pathol 2008; 172: 288–298.
45.
O'Seaghdha CM, Hwang SJ, Ho JE, Vasan RS, Levy D, Fox CS: Elevated galectin-3 precedes the development of CKD. J Am Soc Nephrol 2013; 24: 1470–1477.
46.
Lau WL, Khazaeli M, Savoj J, Manekia K, Bangash M, Thakurta RG, et al: Dietary tetrahydrocurcumin reduces renal fibrosis and cardiac hypertrophy in 5/6 nephrectomized rats. Pharmacol Res Perspect 2018; 6:e00385.
47.
Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE, Drazner MH, et al: 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation 2013; 128:e240–e327.
48.
Meijers WC, van der Velde AR, Ruifrok WP, Schroten NF, Dokter MM, Damman K, et al: Renal handling of galectin-3 in the general population, chronic heart failure, and hemodialysis. J Am Heart Assoc 2014; 3:e000962.
49.
Gopal DM, Kommineni M, Ayalon N, Koelbl C, Ayalon R, Biolo A, et al: Relationship of plasma galectin-3 to renal function in patients with heart failure: effects of clinical status, pathophysiology of heart failure, and presence or absence of heart failure. J Am Heart Assoc 2012; 1:e000760.
50.
Zamora E, Lupón J, de Antonio M, Galán A, Domingo M, Urrutia A, et al: Renal function largely influences Galectin-3 prognostic value in heart failure. Int J Cardiol 2014; 177: 171–177.
51.
Drechsler C, Delgado G, Wanner C, Blouin K, Pilz S, Tomaschitz A, et al: Galectin-3, renal function, and clinical outcomes: results from the LURIC and 4D studies. J Am Soc Nephrol 2015; 26: 2213–2221.
52.
Barrett H, O’Keeffe M, Kavanagh E, Walsh M, O’Connor EM: Is matrix Gla protein associated with vascular calcification? A systematic review. Nutrients 2018; 10:pii:E415.
53.
Fusaro M, Crepaldi G, Maggi S, Galli F, D’Angelo A, Calò L, et al: Vitamin K, bone fractures, and vascular calcifications in chronic kidney disease: an important but poorly studied relationship. J Endocrinol Invest 2011; 34: 317–323.
54.
Wei FF, Trenson S, Thijs L, Huang QF, Zhang ZY, Yang WY, et al: Desphospho-uncarboxylated matrix Gla protein is a novel circulating biomarker predicting deterioration of renal function in the general population. Nephrol Dial Transplant 2017; 33: 1122–1128.
55.
Parker BD, Ix JH, Cranenburg EC, Vermeer C, Whooley MA, Schurgers LJ: Association of kidney function and uncarboxylated matrix Gla protein: data from the Heart and Soul Study. Nephrol Dial Transplant 2009; 24: 2095–2101.
56.
Rennenberg RJ, Schurgers LJ, Vermeer C, Scholte JB, Houben AJ, de Leeuw PW, et al: Renal handling of matrix Gla-protein in humans with moderate to severe hypertension. Hypertens Res 2008; 31: 1745–1751.
57.
Delanaye P, Liabeuf S, Bouquegneau A, Cavalier É, Massy ZA: [The matrix-gla protein awakening may lead to the demise of vascular calcification]. Nephrol Ther 2015; 11: 191–200.
58.
Fusaro M, Tripepi G, Noale M, Plebani M, Zaninotto M, Piccoli A, et al: Prevalence of vertebral fractures, vascular calcifications, and mortality in warfarin treated hemodialysis patients. Curr Vasc Pharmacol 2015; 13: 248–258.
59.
Lin MC, Streja E, Soohoo M, Hanna M, Savoj J, Kalantar-Zadeh K, et al: Warfarin use and increased mortality in end-stage renal disease. Am J Nephrol 2017; 46: 249–256.
60.
Fusaro M, Plebani M, Iervasi G, Gallieni M: Vitamin K deficiency in chronic kidney disease: evidence is building up. Am J Nephrol 2017; 45: 1–3.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.