Background/Aims: A critical involvement of the endocannabinoid/cannabinoid receptor system in diabetes and its complications has been recognized. Experimental evidence suggested that activation of the cannabinoid receptor type 2 (CB2), which is expressed in the kidney by podocytes and inflammatory cells, had a protective role in early streptozotocin-induced type 1 diabetes in mice. No experimental evidence is so far available on the effects of CB2 agonists in type 2 diabetes. In this study, we investigated the effects of a CB2 agonist given at a phase of overt disease on renal functional and structural changes in BTBR ob/ob mice, a model of type 2 diabetic nephropathy. Methods: BTBR ob/ob mice received, from 10 to 21 weeks of age, vehicle, the selective CB2 agonist HU910, or lisinopril used as standard therapy for comparison. BTBR wild-type mice served as controls. Results: Treatment with CB2 agonist reduced progressive albuminuria of BTBR ob/ob mice to a similar extent as ACE inhibitor. The antiproteinuric effect of CB2 agonist was associated with the amelioration of the defective nephrin expression in podocytes of diabetic mice. CB2 agonist limited mesangial matrix expansion, fibronectin accumulation and sclerosis. Glomerular infiltration of Mac-2-positive monocytes/machrophages was attenuated by CB2 agonist, at least in part due to the drug's ability to reduce MCP-1 chemotactic signals. Renoprotective effects of CB2 were similar to those achieved by ACE inhibitor. Conclusion: These results suggest that CB2 agonism is a potential option to be added to the available therapeutic armamentarium for type 2 diabetic nephropathy.

1.
http://www.Idf.Org/diabetesatlas (accessed February 23, 2014).
2.
Remuzzi G, Schieppati A, Ruggenenti P: Clinical practice. Nephropathy in patients with type 2 diabetes. N Engl J Med 2002;346:1145-1151.
3.
Molitch ME, DeFronzo RA, Franz MJ, Keane WF, Mogensen CE, Parving HH, Steffes MW: Nephropathy in diabetes. Diabetes Care 2004;27(suppl 1):S79-S83.
4.
Tuttle KR, Bakris GL, Bilous RW, Chiang JL, de Boer IH, Goldstein-Fuchs J, Hirsch IB, Kalantar-Zadeh K, Narva AS, Navaneethan SD, Neumiller JJ, Patel UD, Ratner RE, Whaley-Connell AT, Molitch ME: Diabetic kidney disease: a report from an ADA consensus conference. Am J Kidney Dis 2014;64:510-533.
5.
Parving HH, Lehnert H, Bröchner-Mortensen J, Gomis R, Andersen S, Arner P: The effect of irbesartan on the development of diabetic nephropathy in patients with type 2 diabetes. N Engl J Med 2001;345:870-878.
6.
Cea Soriano L, Johansson S, Stefansson B, Rodríguez LA: Cardiovascular events and all-cause mortality in a cohort of 57,946 patients with type 2 diabetes: associations with renal function and cardiovascular risk factors. Cardiovasc Diabetol 2015;14:38.
7.
Ruggenenti P, Remuzzi G: Time to abandon microalbuminuria? Kidney Int 2006;70:1214-1222.
8.
Ruggenenti P, Fassi A, Ilieva AP, Bruno S, Iliev IP, Brusegan V, Rubis N, Gherardi G, Arnoldi F, Ganeva M, Ene-Iordache B, Gaspari F, Perna A, Bossi A, Trevisan R, Dodesini AR, Remuzzi G: Preventing microalbuminuria in type 2 diabetes. N Engl J Med 2004;351:1941-1951.
9.
Remuzzi G, Macia M, Ruggenenti P: Prevention and treatment of diabetic renal disease in type 2 diabetes: the benedict study. J Am Soc Nephrol 2006;17:S90-S97.
10.
Parving HH, Rossing P: Diabetic nephropathy in 2014: improved cardiorenal prognosis in diabetic nephropathy. Nat Rev Nephrol 2015;11:68-70.
11.
Perico N, Amuchastegui SC, Colosio V, Sonzogni G, Bertani T, Remuzzi G: Evidence that an angiotensin-converting enzyme inhibitor has a different effect on glomerular injury according to the different phase of the disease at which the treatment is started. J Am Soc Nephrol 1994;5:1139-1146.
12.
Ruggenenti P, Cravedi P, Remuzzi G: The RAAS in the pathogenesis and treatment of diabetic nephropathy. Nat Rev Nephrol 2010;6:319-330.
13.
Di Marzo V: The endocannabinoid system in obesity and type 2 diabetes. Diabetologia 2008;51:1356-1367.
14.
Barutta F, Corbelli A, Mastrocola R, Gambino R, Di Marzo V, Pinach S, Rastaldi MP, Perin PC, Gruden G: Cannabinoid receptor 1 blockade ameliorates albuminuria in experimental diabetic nephropathy. Diabetes 2010;59:1046-1054.
15.
Barutta F, Piscitelli F, Pinach S, Bruno G, Gambino R, Rastaldi MP, Salvidio G, Di Marzo V, Cavallo Perin P, Gruden G: Protective role of cannabinoid receptor type 2 in a mouse model of diabetic nephropathy. Diabetes 2011;60:2386-2396.
16.
Nam DH, Lee MH, Kim JE, Song HK, Kang YS, Lee JE, Kim HW, Cha JJ, Hyun YY, Kim SH, Han SY, Han KH, Han JY, Cha DR: Blockade of cannabinoid receptor 1 improves insulin resistance, lipid metabolism, and diabetic nephropathy in db/db mice. Endocrinology 2012;153:1387-1396.
17.
Jourdan T, Szanda G, Rosenberg AZ, Tam J, Earley BJ, Godlewski G, Cinar R, Liu Z, Liu J, Ju C, Pacher P, Kunos G: Overactive cannabinoid 1 receptor in podocytes drives type 2 diabetic nephropathy. Proc Natl Acad Sci U S A 2014;111:E5420-E5428.
18.
Di Marzo V: Endocannabinoids: synthesis and degradation. Rev Physiol Biochem Pharmacol 2008;160:1-24.
19.
Di Marzo V, Stella N, Zimmer A: Endocannabinoid signalling and the deteriorating brain. Nat Rev Neurosci 2015;16:30-42.
20.
Julien B, Grenard P, Teixeira-Clerc F, Van Nhieu JT, Li L, Karsak M, Zimmer A, Mallat A, Lotersztajn S: Antifibrogenic role of the cannabinoid receptor CB2 in the liver. Gastroenterology 2005;128:742-755.
21.
Rajesh M, Mukhopadhyay P, HaskóG, Huffman JW, Mackie K, Pacher P: CB2 cannabinoid receptor agonists attenuate TNF-alpha-induced human vascular smooth muscle cell proliferation and migration. Br J Pharmacol 2008;153:347-357.
22.
Rajesh M, Mukhopadhyay P, Bátkai S, Haskó G, Liaudet L, Huffman JW, Csiszar A, Ungvari Z, Mackie K, Chatterjee S, Pacher P: CB2-receptor stimulation attenuates TNF-alpha-induced human endothelial cell activation, transendothelial migration of monocytes, and monocyte-endothelial adhesion. Am J Physiol Heart Circ Physiol 2007;293:H2210-H2218.
23.
Barutta F, Grimaldi S, Franco I, Bellini S, Gambino R, Pinach S, Corbelli A, Bruno G, Rastaldi MP, Aveta T, Hirsch E, Di Marzo V, Gruden G: Deficiency of cannabinoid receptor of type 2 worsens renal functional and structural abnormalities in streptozotocin-induced diabetic mice. Kidney Int 2014;86:979-990.
24.
Pichaiwong W, Hudkins KL, Wietecha T, Nguyen TQ, Tachaudomdach C, Li W, Askari B, Kobayashi T, O'Brien KD, Pippin JW, Shankland SJ, Alpers CE: Reversibility of structural and functional damage in a model of advanced diabetic nephropathy. J Am Soc Nephrol 2013;24:1088-1102.
25.
Hudkins KL, Pichaiwong W, Wietecha T, Kowalewska J, Banas MC, Spencer MW, Mühlfeld A, Koelling M, Pippin JW, Shankland SJ, Askari B, Rabaglia ME, Keller MP, Attie AD, Alpers CE: BTBR ob/ob mutant mice model progressive diabetic nephropathy. J Am Soc Nephrol 2010;21:1533-1542.
26.
Horváth B, Magid L, Mukhopadhyay P, Bátkai S, Rajesh M, Park O, Tanchian G, Gao RY, Goodfellow CE, Glass M, Mechoulam R, Pacher P: A new cannabinoid CB2 receptor agonist HU-910 attenuates oxidative stress, inflammation and cell death associated with hepatic ischaemia/reperfusion injury. Br J Pharmacol 2012;165:2462-2478.
27.
Weibel E: Practical methods for biological morphometry; in Press A (ed): Stereological Methods. London, 1979, pp 40-116.
28.
Macconi D, Bonomelli M, Benigni A, Plati T, Sangalli F, Longaretti L, Conti S, Kawachi H, Hill P, Remuzzi G, Remuzzi A: Pathophysiologic implications of reduced podocyte number in a rat model of progressive glomerular injury. Am J Pathol 2006;168:42-54.
29.
Alpers CE, Hudkins KL: Mouse models of diabetic nephropathy. Curr Opin Nephrol Hypertens 2011;20:278-284.
30.
Maresz K, Pryce G, Ponomarev ED, Marsicano G, Croxford JL, Shriver LP, Ledent C, Cheng X, Carrier EJ, Mann MK, Giovannoni G, Pertwee RG, Yamamura T, Buckley NE, Hillard CJ, Lutz B, Baker D, Dittel BN: Direct suppression of CNS autoimmune inflammation via the cannabinoid receptor CB1 on neurons and CB2 on autoreactive T cells. Nat Med 2007;13:492-497.
31.
Steffens S, Veillard NR, Arnaud C, Pelli G, Burger F, Staub C, Karsak M, Zimmer A, Frossard JL, Mach F: Low dose oral cannabinoid therapy reduces progression of atherosclerosis in mice. Nature 2005;434:782-786.
32.
Muñoz-Luque J, Ros J, Fernández-Varo G, Tugues S, Morales-Ruiz M, Alvarez CE, Friedman SL, Arroyo V, Jiménez W: Regression of fibrosis after chronic stimulation of cannabinoid CB2 receptor in cirrhotic rats. J Pharmacol Exp Ther 2008;324:475-483.
33.
Mukhopadhyay P, Rajesh M, Pan H, Patel V, Mukhopadhyay B, Bátkai S, Gao B, Haskó G, Pacher P: Cannabinoid-2 receptor limits inflammation, oxidative/nitrosative stress, and cell death in nephropathy. Free Radic Biol Med 2010;48:457-467.
34.
Sassy-Prigent C, Heudes D, Mandet C, Bélair MF, Michel O, Perdereau B, Bariéty J, Bruneval P: Early glomerular macrophage recruitment in streptozotocin-induced diabetic rats. Diabetes 2000;49:466-475.
35.
Kato S, Luyckx VA, Ots M, Lee KW, Ziai F, Troy JL, Brenner BM, Mackenzie HS: Renin-angiotensin blockade lowers MCP-1 expression in diabetic rats. Kidney Int 1999;56:1037-1048.
36.
Pawluczyk IZ, Harris KP: Cytokine interactions promote synergistic fibronectin accumulation by mesangial cells. Kidney Int 1998;54:62-70.
37.
Giunti S, Tesch GH, Pinach S, Burt DJ, Cooper ME, Cavallo-Perin P, Camussi G, Gruden G: Monocyte chemoattractant protein-1 has prosclerotic effects both in a mouse model of experimental diabetes and in vitro in human mesangial cells. Diabetologia 2008;51:198-207.
38.
Burt D, Salvidio G, Tarabra E, Barutta F, Pinach S, Dentelli P, Camussi G, Perin PC, Gruden G: The monocyte chemoattractant protein-1/cognate CC chemokine receptor 2 system affects cell motility in cultured human podocytes. Am J Pathol 2007;171:1789-1799.
39.
Lee EY, Chung CH, Khoury CC, Yeo TK, Pyagay PE, Wang A, Chen S: The monocyte chemoattractant protein-1/CCR2 loop, inducible by TGF-beta, increases podocyte motility and albumin permeability. Am J Physiol Renal Physiol 2009;297:F85-F94.
40.
Tarabra E, Giunti S, Barutta F, Salvidio G, Burt D, Deferrari G, Gambino R, Vergola D, Pinach S, Perin PC, Camussi G, Gruden G: Effect of the monocyte chemoattractant protein-1/CC chemokine receptor 2 system on nephrin expression in streptozotocin-treated mice and human cultured podocytes. Diabetes 2009;58:2109-2118.
41.
Trevisan R, Dodesini AR, Lepore G: Lipids and renal disease. J Am Soc Nephrol 2006;17:S145-S147.
42.
Beltramo M: Cannabinoid type 2 receptor as a target for chronic pain. Mini Rev Med Chem 2009;9:11-25.
43.
Ostenfeld T, Price J, Albanese M, Bullman J, Guillard F, Meyer I, Leeson R, Costantin C, Ziviani L, Nocini PF, Milleri S: A randomized, controlled study to investigate the analgesic efficacy of single doses of the cannabinoid receptor-2 agonist GW842166, ibuprofen or placebo in patients with acute pain following third molar tooth extraction. Clin J Pain 2011;27:668-676.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.