Transgenic technologies in mice became invaluable experimental tools to identify the in vivo function of proteins. However, conventional knockout technology often results in embryonic lethality and because genes are frequently expressed in multiple cell types, the resulting knockout phenotypes can be complex and difficult or impossible to dissect. These issues are particularly important for gene-targeting strategies used to examine renal function. The kidney contains quite a number of different cell types, the function of many of which impacts that of other renal cells. To avoid these limitations conditional knockout strategies have been designed. As one important part of this system we describe the development of a mouse line expressing the tamoxifen-activatable Cre recombinase Cre-ERT2 specifically in renal proximal tubules. The expression of Cre-ERT2 is driven by a promoter fragment of the mouse γ-glutamyl transpeptidase type II gene resulting in the generation of the activatable recombinase in S3 segments of the proximal tubules from which over 80% were positive for Cre activity. In combination with loxP-based conditional mutant mice as a second tool this tamoxifen-inducible Cre-ERT2 line allows functional analysis of a variety of genes important for renal development and function in a precisely controlled spatiotemporal manner.

1.
Branda CS, Dymecki SM: Talking about a revolution: the impact of site-specific recombinases on genetic analyses in mice. Dev Cell 2004;6:7–28.
[PubMed]
2.
Sauer B: Inducible gene targeting in mice using the Cre/lox system. Methods 1998;14:381–392.
[PubMed]
3.
Nagy A: Cre recombinase: the universal reagent for genome tailoring. Genesis 2000;26:99–109.
[PubMed]
4.
Igarashi P: Kidney-specific gene targeting. J Am Soc Nephrol 2004;15:2237–2239.
[PubMed]
5.
Lantinga-van Leeuwen IS, Leonhard WN, van de Wal A, Breuning MH, Verbeek S, de Heer E, Peters DJ: Transgenic mice expressing tamoxifen-inducible cre for somatic gene modification in renal epithelial cells. Genesis 2006;44:225–232.
[PubMed]
6.
Gossen M, Bujard H: Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci USA 1992;89:5547–5551.
[PubMed]
7.
Feil R, Brocard J, Mascrez B, LeMeur M, Metzger D, Chambon P: Ligand-activated site-specific recombination in mice. Proc Natl Acad Sci USA 1996;93:10887–10890.
[PubMed]
8.
Indra AK, Warot X, Brocard J, Bornert JM, Xiao JH, Chambon P, Metzger D: Temporally-controlled site-specific mutagenesis in the basal layer of the epidermis: comparison of the recombinase activity of the tamoxifen-inducible cre-ER(T) and cre-ER(T2) recombinases. Nucleic Acids Res 1999;27:4324–4327.
[PubMed]
9.
Danielian PS, White R, Hoare SA, Fawell SE, Parker MG: Identification of residues in the estrogen receptor that confer differential sensitivity to estrogen and hydroxytamoxifen. Mol Endocrinol 1993;7:232–240.
[PubMed]
10.
Littlewood TD, Hancock DC, Danielian PS, Parker MG, Evan GI: A modified oestrogen receptor ligand-binding domain as an improved switch for the regulation of heterologous proteins. Nucleic Acids Res 1995;23:1686–1690.
[PubMed]
11.
Mahfoudi A, Roulet E, Dauvois S, Parker MG, Wahli W: Specific mutations in the estrogen receptor change the properties of antiestrogens to full agonists. Proc Natl Acad Sci USA 1995;92:4206–4210.
[PubMed]
12.
Danielian PS, Muccino D, Rowitch DH, Michael SK, McMahon AP: Modification of gene activity in mouse embryos in utero by a tamoxifen-inducible form of cre recombinase. Curr Biol 1998;8:1323–1326.
[PubMed]
13.
Hayashi S, McMahon AP: Efficient recombination in diverse tissues by a tamoxifen-inducible form of cre: a tool for temporally regulated gene activation/inactivation in the mouse. Dev Biol 2002;244:305–318.
[PubMed]
14.
Feil R, Wagner J, Metzger D, Chambon P: Regulation of cre recombinase activity by mutated estrogen receptor ligand-binding domains. Biochem Biophys Res Commun 1997;237:752–757.
[PubMed]
15.
Sepulveda AR, Huang SL, Lebovitz RM, Lieberman MW: A 346-base pair region of the mouse gamma-glutamyl transpeptidase type II promoter contains sufficient cis-acting elements for kidney-restricted expression in transgenic mice. J Biol Chem 1997;272:11959–11967.
[PubMed]
16.
Soriano P: Generalized lacZ expression with the ROSA26 cre reporter strain. Nat Genet 1999;21:70–71.
[PubMed]
17.
Le Y, Gagneten S, Larson T, Santha E, Dobi A, v Agoston D, Sauer B: Far-upstream elements are dispensable for tissue-specific proenkephalin expression using a cre-mediated knock-in strategy. J Neurochem 2003;84:689–697.
[PubMed]
18.
Ivanyi B, Olsen TS: Immunohistochemical identification of tubular segments in percutaneous renal biopsies. Histochemistry 1991;95:351–356.
[PubMed]
19.
Barresi G, Tuccari G, Arena F: Peanut and Lotus tetragonolobus binding sites in human kidney from congenital nephrotic syndrome of Finnish type. Histochemistry 1988;89:117–120.
[PubMed]
20.
Watanabe M, Muramatsu T, Shirane H, Ugai K: Discrete distribution of binding sites for Dolichos biflorus agglutinin (DBA) and for peanut agglutinin (PNA) in mouse organ tissues. J Histochem Cytochem 1981;29:779–780.
[PubMed]
21.
Rutenburg AM, Kim H, Fischbein JW, Hanker JS, Wasserkrug HL, Seligman AM: Histochemical and ultrastructural demonstration of gamma-glutamyl transpeptidase activity. J Histochem Cytochem 1969;17:517–526.
[PubMed]
22.
Briere N, Martel M, Plante G, Petitclerc C: Heterogeneous distribution of alkaline phosphatase and gamma-glutamyl transpeptidase in the mouse nephron. Acta Histochem 1984;74:103–108.
[PubMed]
23.
Brake RL, Simmons PJ, Begley CG: Cross-contamination with tamoxifen induces transgene expression in non-exposed inducible transgenic mice. Genet Mol Res 2004;3:456–462.
[PubMed]
24.
Lu W, Peissel B, Babakhanlou H, Pavlova A, Geng L, Fan X, Larson C, Brent G, Zhou J: Perinatal lethality with kidney and pancreas defects in mice with a targeted Pkd1 mutation. Nat Genet 1997;17:179–181.
[PubMed]
25.
Kim K, Drummond I, Ibraghimov-Beskrovnaya O, Klinger K, Arnaout MA: Polycystin 1 is required for the structural integrity of blood vessels. Proc Natl Acad Sci USA 2000;97:1731–1736.
[PubMed]
26.
Pennekamp P, Karcher C, Fischer A, Schweickert A, Skryabin B, Horst J, Blum M, Dworniczak B: The ion channel polycystin-2 is required for left-right axis determination in mice. Curr Biol 2002;12:938–943.
[PubMed]
27.
Casanova E, Fehsenfeld S, Lemberger T, Shimshek DR, Sprengel R, Mantamadiotis T: ER-based double iCre fusion protein allows partial recombination in forebrain. Genesis 2002;34:208–214.
[PubMed]
28.
Leone DP, Genoud S, Atanasoski S, Grausenburger R, Berger P, Metzger D, Macklin WB, Chambon P, Suter U: Tamoxifen-inducible glia-specific cre mice for somatic mutagenesis in oligodendrocytes and Schwann cells. Mol Cell Neurosci 2003;22:430–440.
[PubMed]
29.
Tannour-Louet M, Porteu A, Vaulont S, Kahn A, Vasseur-Cognet M: A tamoxifen-inducible chimeric cre recombinase specifically effective in the fetal and adult mouse liver. Hepatology 2002;35:1072–1081.
[PubMed]
30.
Furr BJ, Jordan VC: The pharmacology and clinical uses of tamoxifen. Pharmacol Ther 1984;25:127–205.
[PubMed]
31.
Vasioukhin V, Degenstein L, Wise B, Fuchs E: The magical touch: genome targeting in epidermal stem cells induced by tamoxifen application to mouse skin. Proc Natl Acad Sci USA 1999;96:8551–8556.
[PubMed]
32.
Guo C, Yang W, Lobe CG: A cre recombinase transgene with mosaic, widespread tamoxifen-inducible action. Genesis 2002;32:8–18.
[PubMed]
33.
Bugeon L, Danou A, Carpentier D, Langridge P, Syed N, Dallman MJ: Inducible gene silencing in podocytes: a new tool for studying glomerular function. J Am Soc Nephrol 2003;14:786–791.
[PubMed]
34.
Wen F, Cecena G, Munoz-Ritchie V, Fuchs E, Chambon P, Oshima RG: Expression of conditional cre recombinase in epithelial tissues of transgenic mice. Genesis 2003;35:100–106.
[PubMed]
35.
Zhao J, Nassar MA, Gavazzi I, Wood JN: Tamoxifen-inducible NaV1.8-CreERT2 recombinase activity in nociceptive neurons of dorsal root ganglia. Genesis 2006;44:364–371.
[PubMed]
36.
Venkatachalam MA, Bernard DB, Donohoe JF, Levinsky NG: Ischemic damage and repair in the rat proximal tubule: differences among the S1, S2, and S3 segments. Kidney Int 1978;14:31–49.
[PubMed]
37.
Gunther W, Luchow A, Cluzeaud F, Vandewalle A, Jentsch TJ: ClC-5, the chloride channel mutated in Dent’s disease, colocalizes with the proton pump in endocytotically active kidney cells. Proc Natl Acad Sci USA 1998;95:8075–8080.
[PubMed]
38.
Farquhar MG, Saito A, Kerjaschki D, Orlando RA: The Heymann nephritis antigenic complex: megalin (gp330) and RAP. J Am Soc Nephrol 1995;6:35–47.
[PubMed]
39.
Willnow TE, Hilpert J, Armstrong SA, Rohlmann A, Hammer RE, Burns DK, Herz J: Defective forebrain development in mice lacking gp330/megalin. Proc Natl Acad Sci USA 1996;93:8460–8464.
[PubMed]
40.
Leheste JR, Rolinski B, Vorum H, Hilpert J, Nykjaer A, Jacobsen C, Aucouturier P, Moskaug JO, Otto A, Christensen EI, Willnow TE: Megalin knockout mice as an animal model of low molecular weight proteinuria. Am J Pathol 1999;155:1361–1370.
[PubMed]
You do not currently have access to this content.