Background/Aims: Lupus nephritis is an organ manifestation of systemic autoimmunity. Current treatment algorithms are still based on unselective immunosuppressive drugs. There is hope that highly selective biological drugs could be as or even more effective but less toxic. A profound understanding of the pathogenesis of lupus nephritis is necessary to identify the optimal molecular targets. Methods: PubMed and www.clincialtrials.gov were searched using ‘lupus nephritis' as the key word. Results: The pathogenesis of lupus nephritis is based (1) on the mechanisms that lead to loss of tolerance against nuclear autoantigens, i.e. systemic lupus, and then (2) on the mechanisms of immune complex-induced intrarenal inflammation. Systemic lupus develops when genetic variants allow autoimmunization against nuclear autoantigens, e.g. by impairing lymphocyte depletion via apoptosis, opsonization, and rapid phagocytic clearance. This allows endogenous nucleic acids to directly activate Toll-like receptors on dendritic cells or B cells, a process that drives IFN-α-driven immunity, antigen presentation, and the activation of autoreactive lymphocyte subsets. Activation of B cells and their maturation to plasma cells promotes autoantibody production and subsequent immune complex glomerulonephritis. Complement and numerous proinflammatory cytokines drive the inflammatory process that can cause kidney injury, scarring, and chronic kidney disease. Conclusion: Systemic lupus is more a variable syndrome than a single disorder based on heterogeneous genetic variants and complex aberrant immune alterations. This makes it less likely that a single specific biological drug will be as efficient as currently used unselective immunosuppressive drugs. Autoantibody production and intrarenal immune complex formation are the hallmark of lupus nephritis. However, kidney injury and scarring also result from local amplification of tissue inflammation. Therefore, a combination of unselective immunosuppressive and biological drugs that block immune cell recruitment or proinflammatory cytokines may be promising to improve disease outcomes in lupus nephritis.

1.
Lech M, Anders HJ: The pathogenesis of lupus nephritis. J Am Soc Nephrol 2013;24:1357-1366.
2.
Munoz LE, Lauber K, Schiller M, Manfredi AA, Herrmann M: The role of defective clearance of apoptotic cells in systemic autoimmunity. Nat Rev Rheumatol 2010;6:280-289.
3.
Hakkim A, Furnrohr BG, Amann K, Laube B, Abu Abed U, Brinkmann V, Herrmann M, Voll RE, Zychlinsky A: Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis. Proc Natl Acad Sci U S A 2010;107:9813-9818.
4.
Marshak-Rothstein A, Rifkin IR: Immunologically active autoantigens: the role of Toll-like receptors in the development of chronic inflammatory disease. Annu Rev Immunol 2007;25:419-441.
5.
Migliorini A, Anders HJ: A novel pathogenetic concept-antiviral immunity in lupus nephritis. Nat Rev Nephrol 2012;8:183-189.
6.
Hiepe F, Dorner T, Hauser AE, Hoyer BF, Mei H, Radbruch A: Long-lived autoreactive plasma cells drive persistent autoimmune inflammation. Nat Rev Rheumatol 2011;7:170-178.
7.
Allam R, Anders HJ: The role of innate immunity in autoimmune tissue injury. Curr Opin Rheumatol 2008;20:538-544.
8.
Lech M, Weidenbusch M, Kulkarni O, Ryu M, Darisipudi MN, Susanti HE, Mittruecker HW, Mak TW, Anders HJ: IRF4 deficiency abrogates lupus nephritis despite enhancing systemic cytokine production. J Am Soc Nephrol 2011;22:1443-1452.
9.
Anders HJ, Fogo AB: Immunopathology of lupus nephritis. Semin Immunopathol 2014.
10.
Hahn BH, McMahon MA, Wilkinson A, Wallace WD, Daikh DI, Fitzgerald JD, Karpouzas GA, Merrill JT, Wallace DJ, Yazdany J, Ramsey-Goldman R, Singh K, Khalighi M, Choi SI, Gogia M, Kafaja S, Kamgar M, Lau C, Martin WJ, Parikh S, Peng J, Rastogi A, Chen W, Grossman JM: American College of Rheumatology guidelines for screening, treatment, and management of lupus nephritis. Arthritis Care Res (Hoboken) 2012;64:797-808.
11.
Aringer M, Burkhardt H, Burmester GR, Fischer-Betz R, Fleck M, Graninger W, Hiepe F, Jacobi AM, Kotter I, Lakomek HJ, Lorenz HM, Manger B, Schett G, Schmidt RE, Schneider M, Schulze-Koops H, Smolen JS, Specker C, Stoll T, Strangfeld A, Tony HP, Villiger PM, Voll R, Witte T, Dorner T: Current state of evidence on ‘off label' therapeutic options for systemic lupus erythematosus, including biological immunosuppressive agents, in Germany, Austria, and Switzerland - a consensus report. Lupus 2012;21:386-401.
12.
Guiducci C, Gong M, Xu Z, Gill M, Chaussabel D, Meeker T, Chan JH, Wright T, Punaro M, Bolland S, Soumelis V, Banchereau J, Coffman RL, Pascual V, Barrat FJ: TLR recognition of self nucleic acids hampers glucocorticoid activity in lupus. Nature 2010;465:937-941.
13.
Pawar RD, Ramanjaneyulu A, Kulkarni OP, Lech M, Segerer S, Anders HJ: Inhibition of Toll-like receptor-7 (TLR-7) or TLR-7 plus TLR-9 attenuates glomerulonephritis and lung injury in experimental lupus. J Am Soc Nephrol 2007;18:1721-1731.
14.
Furie R, Nicholls K, Cheng TT, Houssiau F, Burgos-Vargas R, Chen SL, Hillson JL, Meadows-Shropshire S, Kinaszczuk M, Merrill JT: Efficacy and safety of abatacept in lupus nephritis: a twelve-month, randomized, double-blind study. Arthritis Rheumatol 2014;66:379-389.
15.
Rupanagudi KV, Kulkarni OP, Lichtnekert J, Darisipudi MN, Mulay SR, Schott B, Gruner S, Haap W, Hartmann G, Anders HJ: Cathepsin S inhibition suppresses systemic lupus erythematosus and lupus nephritis because cathepsin S is essential for MHC class II-mediated CD4 T cell and B cell priming. Ann Rheum Dis 2013, Epub ahead of print.
16.
Weidenbusch M, Rommele C, Schrottle A, Anders HJ: Beyond the LUNAR trial. Efficacy of rituximab in refractory lupus nephritis. Nephrol Dial Transplant 2012;28:108-111.
17.
Rovin BH, Furie R, Latinis K, Looney RJ, Fervenza FC, Sanchez-Guerrero J, Maciuca R, Zhang D, Garg JP, Brunetta P, Appel G: Efficacy and safety of rituximab in patients with active proliferative lupus nephritis: the Lupus Nephritis Assessment with Rituximab (LUNAR) study. Arthritis Rheum 2012;64:1215-1226.
18.
Condon MB, Ashby D, Pepper RJ, Cook HT, Levy JB, Griffith M, Cairns TD, Lightstone L: Prospective observational single-centre cohort study to evaluate the effectiveness of treating lupus nephritis with rituximab and mycophenolate mofetil but no oral steroids. Ann Rheum Dis 2013;72:1280-1286.
19.
Wallace DJ, Kalunian K, Petri MA, Strand V, Houssiau FA, Pike M, Kilgallen B, Bongardt S, Barry A, Kelley L, Gordon C: Efficacy and safety of epratuzumab in patients with moderate/severe active systemic lupus erythematosus: results from EMBLEM, a phase IIb, randomised, double-blind, placebo-controlled, multicentre study. Ann Rheum Dis 2014;73:183-190.
20.
Navarra SV, Guzman RM, Gallacher AE, Hall S, Levy RA, Jimenez RE, Li EK, Thomas M, Kim HY, Leon MG, Tanasescu C, Nasonov E, Lan JL, Pineda L, Zhong ZJ, Freimuth W, Petri MA: Efficacy and safety of belimumab in patients with active systemic lupus erythematosus: a randomised, placebo-controlled, phase 3 trial. Lancet 2011;377:721-731.
21.
Manzi S, Sanchez-Guerrero J, Merrill JT, Furie R, Gladman D, Navarra SV, Ginzler EM, D'Cruz DP, Doria A, Cooper S, Zhong ZJ, Hough D, Freimuth W, Petri MA: Effects of belimumab, a B lymphocyte stimulator-specific inhibitor, on disease activity across multiple organ domains in patients with systemic lupus erythematosus: combined results from two phase III trials. Ann Rheum Dis 2012;71:1833-1838.
22.
Gregersen JW, Jayne DR: B-cell depletion in the treatment of lupus nephritis. Nat Rev Nephrol 2012;8:505-514.
23.
Aringer M, Houssiau F, Gordon C, Graninger WB, Voll RE, Rath E, Steiner G, Smolen JS: Adverse events and efficacy of TNF-alpha blockade with infliximab in patients with systemic lupus erythematosus: long-term follow-up of 13 patients. Rheumatology (Oxford) 2009;48:1451-1454.
24.
Kulkarni O, Eulberg D, Selve N, Zollner S, Allam R, Pawar RD, Pfeiffer S, Segerer S, Klussmann S, Anders HJ: Anti-Ccl2 Spiegelmer permits 75% dose reduction of cyclophosphamide to control diffuse proliferative lupus nephritis and pneumonitis in MRL-Fas(lpr) mice. J Pharmacol Exp Ther 2009;328:371-377.
25.
Ble A, Mosca M, Di Loreto G, Guglielmotti A, Biondi G, Bombardieri S, Remuzzi G, Ruggenenti P: Antiproteinuric effect of chemokine C-C motif ligand 2 inhibition in subjects with acute proliferative lupus nephritis. Am J Nephrol 2011;34:367-372.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.