The current review collates what is already known of the genetics of chronic kidney disease (CKD), and focuses on new trends in genome-wide assessment of the inherited component of susceptibility to this condition. Early efforts to identify kidney disease susceptibility genetic loci using linkage and candidate gene strategies proved disappointing. More recently, genome-wide association studies have yielded highly promising results suggesting a number of potential candidate genes and genomic regions that may contribute to the pathogenesis of CKD. Renal failure susceptibility genes identified by these methods, such as MYH9, have yielded novel insights into the pathogenesis of CKD. Genome-wide association studies of CKD are beginning to define the genomic architecture of kidney disease and will impact our understanding of how genetic variation influences susceptibility to this condition.

1.
Pesce F, Schena FP: Genome-wide association studies in kidney diseases: quo vadis? Nephrol Dial Transplant 2009;24:3589–3592.
2.
Hirschhorn JN, Lohmueller K, Byrne E, Hirschhorn K: A comprehensive review of genetic association studies. Genet Med 2002;4:45–61.
3.
Bash LD, Coresh J, Kottgen A, Parekh RS, Fulop T, Wang Y, Astor BC: Defining incident chronic kidney disease in the research setting: the ARIC study. Am J Epidemiol 2009;170:414–424.
4.
Freedman BI, Volkova NV, Satko SG, Krisher J, Jurkovitz C, Soucie JM, McClellan WM: Population-based screening for family history of end-stage renal disease among incident dialysis patients. Am J Nephrol 2005;25:529–535.
5.
Seaquist ER, Goetz FC, Rich S, Barbosa J: Familial clustering of diabetic kidney disease. Evidence for genetic susceptibility to diabetic nephropathy. N Engl J Med 1989;320:1161–1165.
6.
Freedman BI, Soucie JM, McClellan WM: Family history of end-stage renal disease among incident dialysis patients. J Am Soc Nephrol 1997;8:1942–1945.
7.
Pettitt DJ, Saad MF, Bennett PH, Nelson RG, Knowler WC: Familial predisposition to renal disease in two generations of Pima Indians with type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia 1990;33:438– 443.
8.
Freedman BI, Tuttle AB, Spray BJ: Familial predisposition to nephropathy in African-Americans with non-insulin-dependent diabetes mellitus. Am J Kidney Dis 1995;25:710–713.
9.
Vijay V, Snehalatha C, Shina K, Lalitha S, Ramachandran A: Familial aggregation of diabetic kidney disease in type 2 diabetes in South India. Diabetes Res Clin Pract 1999;43:167–171.
10.
Canani LH, Gerchman F, Gross JL: Familial clustering of diabetic nephropathy in Brazilian type 2 diabetic patients. Diabetes 1999;48:909–913.
11.
Fox CS, Yang Q, Cupples LA, Guo CY, Larson MG, Leip EP, Wilson PW, Levy D: Genomewide linkage analysis to serum creatinine, GFR, and creatinine clearance in a community-based population: the Framingham Heart Study. J Am Soc Nephrol 2004;15:2457–2461.
12.
Langefeld CD, Beck SR, Bowden DW, Rich SS, Wagenknecht LE, Freedman BI: Heritability of GFR and albuminuria in Caucasians with type 2 diabetes mellitus. Am J Kidney Dis 2004;43:796–800.
13.
Bochud M, Elston RC, Maillard M, Bovet P, Schild L, Shamlaye C, Burnier M: Heritability of renal function in hypertensive families of African descent in the Seychelles (Indian ocean). Kidney Int 2005;67:61–69.
14.
Placha G, Poznik GD, Dunn J, Smiles A, Krolewski B, Glew T, Puppala S, Schneider J, Rogus JJ, Rich SS, Duggirala R, Warram JH, Krolewski AS: A genome-wide linkage scan for genes controlling variation in renal function estimated by serum cystatin C levels in extended families with type 2 diabetes. Diabetes 2006;55:3358–3365.
15.
Forsblom CM, Kanninen T, Lehtovirta M, Saloranta C, Groop LC: Heritability of albumin excretion rate in families of patients with type II diabetes. Diabetologia 1999;42:1359–1366.
16.
Fogarty DG, Rich SS, Hanna L, Warram JH, Krolewski AS: Urinary albumin excretion in families with type 2 diabetes is heritable and genetically correlated to blood pressure. Kidney Int 2000;57:250–257.
17.
Freedman BI, Beck SR, Rich SS, Heiss G, Lewis CE, Turner S, Province MA, Schwander KL, Arnett DK, Mellen BG: A genome-wide scan for urinary albumin excretion in hypertensive families. Hypertension 2003;42:291–296.
18.
Fox CS, Yang Q, Guo CY, Cupples LA, Wilson PW, Levy D, Meigs JB: Genome-wide linkage analysis to urinary microalbuminuria in a community-based sample: the Framingham Heart Study. Kidney Int 2005;67:70–74.
19.
Reeders ST, Breuning MH, Davies KE, Nicholls RD, Jarman AP, Higgs DR, Pearson PL, Weatherall DJ: A highly polymorphic DNA marker linked to adult polycystic kidney disease on chromosome 16. Nature 1985;317:542–544.
20.
Bowden DW, Colicigno CJ, Langefeld CD, Sale MM, Williams A, Anderson PJ, Rich SS, Freedman BI: A genome scan for diabetic nephropathy in African Americans. Kidney Int 2004;66:1517–1526.
21.
Vardarli I, Baier LJ, Hanson RL, Akkoyun I, Fischer C, Rohmeiss P, Basci A, Bartram CR, Van Der Woude FJ, Janssen B: Gene for susceptibility to diabetic nephropathy in type 2 diabetes maps to 18q22.3–23. Kidney Int 2002;62:2176–2183.
22.
Iyengar SK, Abboud HE, Goddard KA, Saad MF, Adler SG, Arar NH, Bowden DW, Duggirala R, Elston RC, Hanson RL, Ipp E, Kao WH, Kimmel PL, Klag MJ, Knowler WC, Meoni LA, Nelson RG, Nicholas SB, Pahl MV, Parekh RS, Quade SR, Rich SS, Rotter JI, Scavini M, Schelling JR, Sedor JR, Sehgal AR, Shah VO, Smith MW, Taylor KD, Winkler CA, Zager PG, Freedman BI: Genome-wide scans for diabetic nephropathy and albuminuria in multiethnic populations: The Family Investigation of Nephropathy and Diabetes (FIND). Diabetes 2007;56:1577–1585.
23.
Janssen B, Hohenadel D, Brinkkoetter P, Peters V, Rind N, Fischer C, Rychlik I, Cerna M, Romzova M, de Heer E, Baelde H, Bakker SJ, Zirie M, Rondeau E, Mathieson P, Saleem MA, Meyer J, Koppel H, Sauerhoefer S, Bartram CR, Nawroth P, Hammes HP, Yard BA, Zschocke J, van der Woude FJ: Carnosine as a protective factor in diabetic nephropathy: association with a leucine repeat of the carnosinase gene CNDP1. Diabetes 2005;54:2320–2327.
24.
Freedman BI, Hicks PJ, Sale MM, Pierson ED, Langefeld CD, Rich SS, Xu J, McDonough C, Janssen B, Yard BA, van der Woude FJ, Bowden DW: A leucine repeat in the carnosinase gene CNDP1 is associated with diabetic end-stage renal disease in European Americans. Nephrol Dial Transplant 2007;22:1131–1135.
25.
McDonough CW, Hicks PJ, Lu L, Langefeld CD, Freedman BI, Bowden DW: The influence of carnosinase gene polymorphisms on diabetic nephropathy risk in African-Americans. Hum Genet 2009;126:265–275.
26.
Riedl E, Koeppel H, Brinkkoetter P, Sternik P, Steinbeisser H, Sauerhoefer S, Janssen B, van der Woude FJ, Yard BA: A CTG polymorphism in the CNDP1 gene determines the secretion of serum carnosinase in COS-7 transfected cells. Diabetes 2007;56:2410–2413.
27.
Rashid I, van Reyk DM, Davies MJ: Carnosine and its constituents inhibit glycation of low-density lipoproteins that promotes foam cell formation in vitro. FEBS Lett 2007;581:1067–1070.
28.
Sourris KC, Forbes JM, Cooper ME: Therapeutic interruption of advanced glycation in diabetic nephropathy: do all roads lead to Rome? Ann N Y Acad Sci 2008;1126:101–106.
29.
Jia H, Qi X, Fang S, Jin Y, Han X, Wang Y, Wang A, Zhou H: Carnosine inhibits high glucose-induced mesangial cell proliferation through mediating cell cycle progression. Regul Pept 2009;154:69–76.
30.
Hirschhorn JN, Daly MJ: Genome-wide association studies for common diseases and complex traits. Nat Rev Genet 2005;6:95–108.
31.
Ruggenenti P, Bettinaglio P, Pinares F, Remuzzi G: Angiotensin converting enzyme insertion/deletion polymorphism and renoprotection in diabetic and nondiabetic nephropathies. Clin J Am Soc Nephrol 2008;3:1511–1525.
32.
Le TH, Coffman TM: Targeting genes in the renin-angiotensin system. Curr Opin Nephrol Hypertens 2008;17:57–63.
33.
Heesom AE, Hibberd ML, Millward A, Demaine AG: Polymorphism in the 5′-end of the aldose reductase gene is strongly associated with the development of diabetic nephropathy in type I diabetes. Diabetes 1997;46:287–291.
34.
Bluthner M, Schmidt S, Siffert W, Knigge H, Nawroth P, Ritz E: Increased frequency of G-protein beta 3-subunit 825 T allele in dialyzed patients with type 2 diabetes. Kidney Int 1999;55:1247–1250.
35.
Chowdhury TA, Dyer PH, Kumar S, Gibson SP, Rowe BR, Davies SJ, Marshall SM, Morris PJ, Gill GV, Feeney S, Maxwell P, Savage D, Boulton AJ, Todd JA, Dunger D, Barnett AH, Bain SC: Association of apolipoprotein epsilon2 allele with diabetic nephropathy in Caucasian subjects with IDDM. Diabetes 1998;47:278–280.
36.
Yu H, Freedman BI, Rich SS, Bowden DW: Human Na+/H+ exchanger genes: identification of polymorphisms by radiation hybrid mapping and analysis of linkage in end-stage renal disease. Hypertension 2000;35:135–143.
37.
Freedman BI, Yu H, Anderson PJ, Roh BH, Rich SS, Bowden DW: Genetic analysis of nitric oxide and endothelin in end-stage renal disease. Nephrol Dial Transplant 2000;15:1794–1800.
38.
Morita T, Ito H, Suehiro T, Tahara K, Matsumori A, Chikazawa H, Nakauchi Y, Nishiya K, Hashimoto K: Effect of a polymorphism of endothelial nitric oxide synthase gene in Japanese patients with IgA nephropathy. Clin Nephrol 1999;52:203–209.
39.
Tanaka R, Iijima K, Xu H, Inoue Y, Murakami R, Shirakawa T, Nishiyama K, Miwa M, Shiozawa S, Nakamura H, Yoshikawa N: Role of platelet-activating factor acetylhydrolase gene mutation in Japanese childhood IgA nephropathy. Am J Kidney Dis 1999;34:289–295.
40.
Deenitchina SS, Shinozaki M, Hirano T, Ando T, Hirakata H, Kiyohara Y, Katafuchi R, Fujishima M: Association of a T-cell receptor constant alpha chain gene polymorphism with progression of IgA nephropathy in Japanese patients. Am J Kidney Dis 1999;34:279–288.
41.
Grant SF, Thorleifsson G, Reynisdottir I, Benediktsson R, Manolescu A, Sainz J, Helgason A, Stefansson H, Emilsson V, Helgadottir A, Styrkarsdottir U, Magnusson KP, Walters GB, Palsdottir E, Jonsdottir T, Gudmundsdottir T, Gylfason A, Saemundsdottir J, Wilensky RL, Reilly MP, Rader DJ, Bagger Y, Christiansen C, Gudnason V, Sigurdsson G, Thorsteinsdottir U, Gulcher JR, Kong A, Stefansson K: Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet 2006;38:320–323.
42.
Humphries SE, Gable D, Cooper JA, Ireland H, Stephens JW, Hurel SJ, Li KW, Palmen J, Miller MA, Cappuccio FP, Elkeles R, Godsland I, Miller GJ, Talmud PJ: Common variants in the TCF7L2 gene and predisposition to type 2 diabetes in UK European whites, Indian Asians and Afro-Caribbean men and women. J Mol Med 2006;84:1005–1014.
43.
Schedl A: Renal abnormalities and their developmental origin. Nat Rev Genet 2007;8:791–802.
44.
Kottgen A, Hwang SJ, Rampersaud E, Coresh J, North KE, Pankow JS, Meigs JB, Florez JC, Parsa A, Levy D, Boerwinkle E, Shuldiner AR, Fox CS, Kao WH: TCF7L2 variants associate with CKD progression and renal function in population-based cohorts. J Am Soc Nephrol 2008;19:1989–1999.
45.
McKnight AJ, Patterson CC, Pettigrew KA, Savage DA, Kilner J, Murphy M, Sadlier D, Maxwell AP: A GREM1 gene variant associates with diabetic nephropathy. J Am Soc Nephrol 2010;21:773–781.
46.
Lappin DW, McMahon R, Murphy M, Brady HR: Gremlin: An example of the re-emergence of developmental programmes in diabetic nephropathy. Nephrol Dial Transplant 2002;17(suppl 9):65–67.
47.
Zhang Y, Zhang Q: Bone morphogenetic protein-7 and gremlin: new emerging therapeutic targets for diabetic nephropathy. Biochem Biophys Res Commun 2009;383:1–3.
48.
Smith MW, O’Brien SJ: Mapping by admixture linkage disequilibrium: advances, limitations and guidelines. Nat Rev Genet 2005;6:623–632.
49.
Arrondel C, Vodovar N, Knebelmann B, Grunfeld JP, Gubler MC, Antignac C, Heidet L: Expression of the nonmuscle myosin heavy chain IIA in the human kidney and screening for MYH9 mutations in Epstein and Fechtner syndromes. J Am Soc Nephrol 2002;13:65–74.
50.
Faul C, Asanuma K, Yanagida-Asanuma E, Kim K, Mundel P: Actin up: regulation of podocyte structure and function by components of the actin cytoskeleton. Trends Cell Biol 2007;17:428–437.
51.
Kao WH, Klag MJ, Meoni LA, Reich D, Berthier-Schaad Y, Li M, Coresh J, Patterson N, Tandon A, Powe NR, Fink NE, Sadler JH, Weir MR, Abboud HE, Adler SG, Divers J, Iyengar SK, Freedman BI, Kimmel PL, Knowler WC, Kohn OF, Kramp K, Leehey DJ, Nicholas SB, Pahl MV, Schelling JR, Sedor JR, Thornley-Brown D, Winkler CA, Smith MW, Parekh RS: MYH9 is associated with nondiabetic end-stage renal disease in African Americans. Nat Genet 2008;40:1185–1192.
52.
Kopp JB, Smith MW, Nelson GW, Johnson RC, Freedman BI, Bowden DW, Oleksyk T, McKenzie LM, Kajiyama H, Ahuja TS, Berns JS, Briggs W, Cho ME, Dart RA, Kimmel PL, Korbet SM, Michel DM, Mokrzycki MH, Schelling JR, Simon E, Trachtman H, Vlahov D, Winkler CA: MYH9 is a major-effect risk gene for focal segmental glomerulosclerosis. Nat Genet 2008;40:1175–1184.
53.
Freedman BI, Hicks PJ, Bostrom MA, Comeau ME, Divers J, Bleyer AJ, Kopp JB, Winkler CA, Nelson GW, Langefeld CD, Bowden DW: Non-muscle myosin heavy chain 9 gene MYH9 associations in Afri-can Americans with clinically diagnosed type 2 diabetes mellitus-associated ESRD. Nephrol Dial Transplant 2009;24:3366–3371.
54.
Singh N, Nainani N, Arora P, Venuto RC: CKD in MYH9-related disorders. Am J Kidney Dis 2009;54:732–740.
55.
Ghiggeri GM, Caridi G, Magrini U, Sessa A, Savoia A, Seri M, Pecci A, Romagnoli R, Gangarossa S, Noris P, Sartore S, Necchi V, Ravazzolo R, Balduini CL: Genetics, clinical and pathological features of glomerulonephritis associated with mutations of nonmuscle myosin IIA (Fechtner syndrome). Am J Kidney Dis 2003;41:95–104.
56.
Moxey-Mims MM, Young G, Silverman A, Selby DM, White JG, Kher KK: End-stage renal disease in two pediatric patients with Fechtner syndrome. Pediatr Nephrol 1999;13:782–786.
57.
Iyori H, Tokushige A, Ishitoya N, Joh K, Matsuyama N, Kanetsuna Y, Aizawa S: A case report of Epstein syndrome. Nippon Jinzo Gakkai Shi 1995;37:62–68.
58.
Peterson LC, Rao KV, Crosson JT, White JG: Fechtner syndrome – a variant of Alport’s syndrome with leukocyte inclusions and macrothrombocytopenia. Blood 1985;65:397–406.
59.
Genovese G, Friedman DJ, Ross MD, Lecordier L, Uzureau P, Freedman BI, Bowden DW, Langefeld CD, Oleksyk TK, Uscinski Knob AL, Bernhardy AJ, Hicks PJ, Nelson GW, Vanhollebeke B, Winkler CA, Kopp JB, Pays E, Pollak MR: Association of trypanolytic apoL1 variants with kidney disease in African Americans. Science 2010;329:841–845.
60.
Sabeti PC, Schaffner SF, Fry B, Lohmueller J, Varilly P, Shamovsky O, Palma A, Mikkelsen TS, Altshuler D, Lander ES: Positive natural selection in the human lineage. Science 2006;312:1614–1620.
61.
Kottgen A, Glazer NL, Dehghan A, Hwang SJ, Katz R, Li M, Yang Q, Gudnason V, Launer LJ, Harris TB, Smith AV, Arking DE, Astor BC, Boerwinkle E, Ehret GB, Ruczinski I, Scharpf RB, Ida Chen YD, de Boer IH, Haritunians T, Lumley T, Sarnak M, Siscovick D, Benjamin EJ, Levy D, Upadhyay A, Aulchenko YS, Hofman A, Rivadeneira F, Uitterlinden AG, van Duijn CM, Chasman DI, Pare G, Ridker PM, Kao WH, Witteman JC, Coresh J, Shlipak MG, Fox CS: Multiple loci associated with indices of renal function and chronic kidney disease. Nat Genet 2009, Epub ahead of print.
62.
Kottgen A, Hwang SJ, Larson MG, Eyk JE, Fu Q, Benjamin EJ, Dehghan A, Glazer NL, Kao WH, Harris TB, Gudnason V, Shlipak MG, Yang Q, Coresh J, Levy D, Fox CS: Uromodulin levels associate with a common UMOD variant and risk for incident CKD. J Am Soc Nephrol 2010;21:337–344.
63.
Rampoldi L, Caridi G, Santon D, Boaretto F, Bernascone I, Lamorte G, Tardanico R, Dagnino M, Colussi G, Scolari F, Ghiggeri GM, Amoroso A, Casari G: Allelism of MCKD, FJHN and GCKD caused by impairment of uromodulin export dynamics. Hum Mol Genet 2003;12:3369–3384.
64.
Vylet’al P, Kublova M, Kalbacova M, Hodanova K, Baresova V, Stiburkova B, Sikora J, Hulkova H, Zivny J, Majewski J, Simmonds A, Fryns JP, Venkat-Raman G, Elleder M, Kmoch S: Alterations of uromodulin biology: a common denominator of the genetically heterogeneous FJHN/MCKD syndrome. Kidney Int 2006;70:1155–1169.
65.
Kottgen A, Pattaro C, Boger CA, et al: New loci associated with kidney function and chronic kidney disease. Nat Genet 2010;42:376–384.
66.
Chambers JC, Zhang W, Lord GM, et al: Genetic loci influencing kidney function and chronic kidney disease. Nat Genet 2010;42:373–375.
67.
Brzostowski JA, Fey P, Yan J, Isik N, Jin T: The ELMO family forms an ancient group of actin-regulating proteins. Commun Integr Biol 2009;2:337–340.
68.
Ravichandran KS, Lorenz U: Engulfment of apoptotic cells: signals for a good meal. Nat Rev Immunol 2007;7:964–974.
69.
Shimazaki A, Kawamura Y, Kanazawa A, Sekine A, Saito S, Tsunoda T, Koya D, Babazono T, Tanaka Y, Matsuda M, Kawai K, Iiizumi T, Imanishi M, Shinosaki T, Yanagimoto T, Ikeda M, Omachi S, Kashiwagi A, Kaku K, Iwamoto Y, Kawamori R, Kikkawa R, Nakajima M, Nakamura Y, Maeda S: Genetic variations in the gene encoding ELMO1 are associated with susceptibility to diabetic nephropathy. Diabetes 2005;54:1171–1178.
70.
Leak TS, Perlegas PS, Smith SG, Keene KL, Hicks PJ, Langefeld CD, Mychaleckyj JC, Rich SS, Kirk JK, Freedman BI, Bowden DW, Sale MM: Variants in intron 13 of the ELMO1 gene are associated with diabetic nephropathy in African Americans. Ann Hum Genet 2009;73:152–159.
71.
Pezzolesi MG, Katavetin P, Kure M, Poznik GD, Skupien J, Mychaleckyj JC, Rich SS, Warram JH, Krolewski AS: Confirmation of genetic associations at ELMO1 in the GoKinD collection supports its role as a susceptibility gene in diabetic nephropathy. Diabetes 2009;58:2698–2702.
72.
Shimazaki A, Tanaka Y, Shinosaki T, Ikeda M, Watada H, Hirose T, Kawamori R, Maeda S: ELMO1 increases expression of extracellular matrix proteins and inhibits cell adhesion to ECMS. Kidney Int 2006;70:1769–1776.
73.
Caramori ML, Kim Y, Huang C, Fish AJ, Rich SS, Miller ME, Russell G, Mauer M: Cellular basis of diabetic nephropathy. 1. Study design and renal structural-functional relationships in patients with long-standing type 1 diabetes. Diabetes 2002;51:506–513.
74.
Maeda S, Kobayashi MA, Araki S, Babazono T, Freedman BI, Bostrom MA, Cooke JN, Toyoda M, Umezono T, Tarnow L, Hansen T, Gaede P, Jorsal A, Ng DP, Ikeda M, Yanagimoto T, Tsunoda T, Unoki H, Kawai K, Imanishi M, Suzuki D, Shin HD, Park KS, Kashiwagi A, Iwamoto Y, Kaku K, Kawamori R, Parving HH, Bowden DW, Pedersen O, Nakamura Y: A single nucleotide polymorphism within the acetyl-coenzyme A carboxylase beta gene is associated with proteinuria in patients with type 2 diabetes. PLoS Genet 2010;6:e1000842.
75.
Abu-Elheiga L, Matzuk MM, Abo-Hashema KA, Wakil SJ: Continuous fatty acid oxidation and reduced fat storage in mice lacking acetyl-CoA carboxylase 2. Science 2001;291:2613–2616.
76.
Pezzolesi MG, Poznik GD, Mychaleckyj JC, Paterson AD, Barati MT, Klein JB, Ng DP, Placha G, Canani LH, Bochenski J, Waggott D, Merchant ML, Krolewski B, Mirea L, Wanic K, Katavetin P, Kure M, Wolkow P, Dunn JS, Smiles A, Walker WH, Boright AP, Bull SB, Doria A, Rogus JJ, Rich SS, Warram JH, Krolewski AS: Genome-wide association scan for diabetic nephropathy susceptibility genes in type 1 diabetes. Diabetes 2009;58:1403–1410.
77.
Ni X, Ji C, Cao G, Cheng H, Guo L, Gu S, Ying K, Zhao RC, Mao Y: Molecular cloning and characterization of the protein 4.1O gene, a novel member of the protein 4.1 family with focal expression in ovary. J Hum Genet 2003;48:101–106.
78.
Behar DM, Rosset S, Tzur S, Selig S, Yudkovsky G, Bercovici S, Kopp JB, Winkler CA, Nelson GW, Wasser WG, Skorecki K: African ancestry allelic variation at the MYH9 gene contributes to increased susceptibility to non-diabetic end-stage kidney disease in Hispanic Americans. Hum Mol Genet 2010;19:1816–1827.
79.
Franceschini N, Voruganti VS, Haack K, Almasy L, Laston S, Goring HH, Umans JG, Lee ET, Best LG, Fabsitz RR, Maccluer JW, Howard BV, North KE, Cole SA: The association of the MYH9 gene and kidney outcomes in American Indians: the Strong Heart Family Study. Hum Genet 2010;127:295–301.
80.
Al-Kateb H, Boright AP, Mirea L, Xie X, Sutradhar R, Mowjoodi A, Bharaj B, Liu M, Bucksa JM, Arends VL, Steffes MW, Cleary PA, Sun W, Lachin JM, Thorner PS, Ho M, McKnight AJ, Maxwell AP, Savage DA, Kidd KK, Kidd JR, Speed WC, Orchard TJ, Miller RG, Sun L, Bull SB, Paterson AD: Multiple superoxide dismutase 1/splicing factor serine alanine 15 variants are associated with the development and progression of diabetic nephropathy: The Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Genetics Study. Diabetes 2008;57:218–228.
81.
Mollsten A, Marklund SL, Wessman M, Svensson M, Forsblom C, Parkkonen M, Brismar K, Groop PH, Dahlquist G: A functional polymorphism in the manganese superoxide dismutase gene and diabetic nephropathy. Diabetes 2007;56:265–269.
82.
Lim SC, Liu JJ, Low HQ, Morgenthaler NG, Li Y, Yeoh LY, Wu YS, Goh SK, Chionh CY, Tan SH, Kon YC, Soon PC, Bee YM, Subramaniam T, Sum CF, Chia KS: Microarray analysis of multiple candidate genes and associated plasma proteins for nephropathy secondary to type 2 diabetes among Chinese individuals. Diabetologia 2009;52:1343–1351.
83.
Nomiyama T, Tanaka Y, Piao L, Nagasaka K, Sakai K, Ogihara T, Nakajima K, Watada H, Kawamori R: The polymorphism of manganese superoxide dismutase is associated with diabetic nephropathy in Japanese type 2 diabetic patients. J Hum Genet 2003;48:138–141.
84.
Lee SJ, Choi MG, Kim DS, Kim TW: Manganese superoxide dismutase gene polymorphism (V16A) is associated with stages of albuminuria in Korean type 2 diabetic patients. Metabolism 2006;55:1–7.
85.
Tiwari AK, Prasad P, B KT, Kumar KM, Ammini AC, Gupta A, Gupta R: Oxidative stress pathway genes and chronic renal insufficiency in Asian Indians with type 2 diabetes. J Diabetes Complications 2009;23:102–111.
86.
Liu L, Zheng T, Wang N, Wang F, Li M, Jiang J, Zhao R, Li L, Zhao W, Zhu Q, Jia W: The manganese superoxide dismutase Val16Ala polymorphism is associated with decreased risk of diabetic nephropathy in Chinese patients with type 2 diabetes. Mol Cell Biochem 2009;322:87–91.
87.
Craig DW, Millis MP, DiStefano JK: Genome-wide SNP genotyping study using pooled DNA to identify candidate markers mediating susceptibility to end-stage renal disease attributed to type 1 diabetes. Diabet Med 2009;26:1090–1098.
88.
Wanic K, Placha G, Dunn J, Smiles A, Warram JH, Krolewski AS: Exclusion of polymorphisms in carnosinase genes (CNDP1 and CNDP2) as cause of diabetic nephropathy in type 1 diabetes mellitus. Results of large case-control and follow-up studies. Diabetes 2008;57:2547–2551.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.