Background: Although Alzheimer’s disease (AD) is the most common form of dementia, the effective treatment of AD is not available currently. Multiple trials of drugs, which were developed based on the amyloid hypothesis of AD, have not been highly successful to improve cognitive and other symptoms in AD patients, suggesting that it is necessary to explore additional and alternative approaches for the disease-modifying treatment of AD. The diverse lines of evidence have revealed that lithium reduces amyloid and tau pathology, attenuates neuronal loss, enhances synaptic plasticity, and improves cognitive function. Clinical studies have shown that lithium reduces the risk of AD and deters the progress of mild cognitive impairment and early AD. Summary: Our recent study has revealed that lithium stabilizes disruptive calcium homeostasis, and subsequently, attenuates the downstream neuropathogenic processes of AD. Through these therapeutic actions, lithium produces therapeutic effects on AD with potential to modify the disease process. This review critically analyzed the preclinical and clinical studies for the therapeutic effects of lithium on AD. We suggest that disruptive calcium homeostasis is likely to be the early neuropathological mechanism of AD, and the stabilization of disruptive calcium homeostasis by lithium would be associated with its therapeutic effects on neuropathology and cognitive deficits in AD. Key Messages: Lithium is likely to be efficacious for AD as a disease-modifying drug by acting on multiple neuropathological targets including disruptive calcium homeostasis.

1.
National Institute on Aging. Alzheimer’s disease fact sheet; 2023. [cited 2023 3/3]. Available from: https://www.nia.nih.gov/health/alzheimers-disease-fact-sheet.
2.
Plascencia-Villa G, Perry G. Chapter One - status and future directions of clinical trials in Alzheimer’s disease. In: Söderbom G, Esterline R, Oscarsson J, Mattson MP, editors. International review of neurobiology. Academic Press; 2020. p. 3–50.
3.
van Dyck CH, Swanson CJ, Aisen P, Bateman RJ, Chen C, Gee M, et al. Lecanemab in early Alzheimer’s disease. N Engl J Med. 2023;388(1):9–21.
4.
Withington CG, Turner RS. Amyloid-related imaging abnormalities with anti-amyloid antibodies for the treatment of dementia due to Alzheimer’s disease. Front Neurol. 2022;13:862369.
5.
Forlenza OV, Aprahamian I, de Paula VJ, Hajek T. Lithium, a therapy for AD: current evidence from clinical trials of neurodegenerative disorders. Curr Alzheimer Res. 2016;13(8):879–86.
6.
Hampel H, Lista S, Mango D, Nisticò R, Perry G, Avila J, et al. Lithium as a treatment for Alzheimer’s disease: the systems pharmacology perspective. J Alzheimers Dis. 2019;69(3):615–29.
7.
Ishii N, Terao T, Hirakawa H. The present state of lithium for the prevention of dementia related to Alzheimer’s dementia in clinical and epidemiological studies: a critical review. Int J Environ Res Public Health. 2021;18(15):7756.
8.
Mauer S, Vergne D, Ghaemi SN. Standard and trace-dose lithium: a systematic review of dementia prevention and other behavioral benefits. Aust N Z J Psychiatry. 2014;48(9):809–18.
9.
Caccamo A, Oddo S, Tran LX, LaFerla FM. Lithium reduces tau phosphorylation but not Aβ or working memory deficits in a transgenic model with both plaques and tangles. Am J Pathol. 2007;170(5):1669–75.
10.
SantaCruz K, Lewis J, Spires T, Paulson J, Kotilinek L, Ingelsson M, et al. Tau suppression in a neurodegenerative mouse model improves memory function. Science. 2005;309(5733):476–81.
11.
Shim SS, Gould TD. Neuroprotective and neurotrophic actions of lithium: implications for the treatment of bipolar disorder, Alzheimer’s disease and neurodegenerative disorders. In: Huang S, editor. Metals and neurodegeneration. India: Research Signpost; 2010. p. 232–67.
12.
Malerba HN, Pereira AAR, Pierrobon MF, Abrao GS, Toricelli M, Akamine EH, et al. Combined neuroprotective strategies blocked neurodegeneration and improved brain function in senescence-accelerated mice. Front Aging Neurosci. 2021;13:681498.
13.
Nocjar C, Hammonds MD, Shim SS. Chronic lithium treatment magnifies learning in rats. Neuroscience. 2007;150(4):774–88.
14.
Shim SS, Hammonds MD, Tatsuoka C, Feng IJ. Effects of 4-weeks of treatment with lithium and olanzapine on long-term potentiation in hippocampal area CA1. Neurosci Lett. 2012;524(1):5–9.
15.
Son H, Yu IT, Hwang S-J, Kim JS, Lee S-H, Lee Y-S, et al. Lithium enhances long-term potentiation independently of hippocampal neurogenesis in the rat dentate gyrus. J Neurochem. 2003;85(4):872–81.
16.
Yu IT, Kim JS, Lee S-H, Lee Y-S, Son H. Chronic lithium enhances hippocampal long-term potentiation, but not neurogenesis, in the aged rat dentate gyrus. Biochem Biophys Res Commun. 2003;303(4):1193–8.
17.
Amaral D, Lavenex P. Hippocampal neuroanatomy. In: Andersen P, Morris R, Amaral D, Bliss T, O’Keefe J, editors. The Hippocampus book. Oxford University Press; 2006.
18.
Shim SS, Hammonds MD, Mervis RF. Four weeks lithium treatment alters neuronal dendrites in the rat hippocampus. Int J Neuropsychopharmacol. 2013;16(6):1373–82.
19.
Bramham CR. Local protein synthesis, actin dynamics, and LTP consolidation. Curr Opin Neurobiol. 2008;18(5):524–31.
20.
Morris GP, Clark IA, Vissel B. Inconsistencies and controversies surrounding the amyloid hypothesis of Alzheimer’s disease. Acta Neuropathol Commun. 2014;2(1):135.
21.
Muller D, Toni N, Buchs P-A. Spine changes associated with long-term potentiation. Hippocampus. 2000;10(5):596–604.
22.
Chen W-F, Chang H, Wong C-S, Huang L-T, Yang C-H, Yang S-N. Impaired expression of postsynaptic density proteins in the hippocampal CA1 region of rats following perinatal hypoxia. Exp Neurol. 2007;204(1):400–10.
23.
Hammonds MD, Shim SS, Feng P, Calabrese JR. Effects of subchronic lithium treatment on levels of BDNF, Bcl-2 and phospho-CREB in the rat hippocampus. Basic Clin Pharmacol Toxicol. 2007;100(5):356–9.
24.
Hashimoto R, Takei N, Shimazu K, Christ L, Lu B, Chuang D-M. Lithium induces brain-derived neurotrophic factor and activates TrkB in rodent cortical neurons: an essential step for neuroprotection against glutamate excitotoxicity. Neuropharmacology. 2002;43(7):1173–9.
25.
Heldt SA, Stanek L, Chhatwal JP, Ressler KJ. Hippocampus-specific deletion of BDNF in adult mice impairs spatial memory and extinction of aversive memories. Mol Psychiatry. 2007;12(7):656–70.
26.
Nakamura M, Raghupathi R, Merry DE, Scherbel U, Saatman KE, Mcintosh TK. Overexpression of Bcl-2 is neuroprotective after experimental brain injury in transgenic mice. J Comp Neurol. 1999;412(4):681–92.
27.
Rondi-Reig L, Lemaigre Dubreuil Y, Martinou J-C, Delhaye-Bouchaud N, Caston J, Mariani J. Fear decrease in transgenic mice over-expressing bcl-2 in neurons. Neuroreport. 1997;8(11):2429–32.
28.
Leroy K, Ando K, Héraud C, Yilmaz Z, Authelet M, Boeynaems J-M, et al. Lithium treatment arrests the development of neurofibrillary tangles in mutant tau transgenic mice with advanced neurofibrillary pathology. J Alzheimers Dis. 2010;19(2):705–19.
29.
Liu M, Qian T, Zhou W, Tao X, Sang S, Zhao L. Beneficial effects of low-dose lithium on cognitive ability and pathological alteration of Alzheimer’s disease transgenic mice model. Neuroreport. 2020;31(13):943–51.
30.
Nunes MA, Schöwe NM, Monteiro-Silva KC, Baraldi-Tornisielo T, Souza SIG, Balthazar J, et al. Chronic microdose lithium treatment prevented memory loss and neurohistopathological changes in a transgenic mouse model of Alzheimer’s disease. PLoS One. 2015;10(11):e0142267.
31.
Phiel CJ, Wilson CA, Lee VMY, Klein PS. GSK-3alpha regulates production of Alzheimer’s disease amyloid-beta peptides. Nature. 2003;423(6938):435–9.
32.
Rockenstein E, Torrance M, Adame A, Mante M, Bar-on P, Rose JB, et al. Neuroprotective effects of regulators of the glycogen synthase kinase-3beta signaling pathway in a transgenic model of Alzheimer’s disease are associated with reduced amyloid precursor protein phosphorylation. J Neurosci. 2007;27(8):1981–91.
33.
Su Y, Ryder J, Li B, Wu X, Fox N, Solenberg P, et al. Lithium, a common drug for bipolar disorder treatment, regulates amyloid-β precursor protein processing. Biochemistry. 2004;43(22):6899–908.
34.
Trujillo-Estrada L, Jimenez S, De Castro V, Torres M, Baglietto-Vargas D, Moreno-Gonzalez I, et al. In vivo modification of Abeta plaque toxicity as a novel neuroprotective lithium-mediated therapy for Alzheimer’s disease pathology. Acta Neuropathol Commun. 2013;1(1):73.
35.
Zhang X, Heng X, Li T, Li L, Yang D, Zhang X, et al. Long-term treatment with lithium alleviates memory deficits and reduces amyloid-β production in an aged Alzheimer’s disease transgenic mouse model. J Alzheimers Dis. 2011;24(4):739–49.
36.
Pérez M, Hernández F, Lim F, Díaz-Nido J, Avila J. Chronic lithium treatment decreases mutant tau protein aggregation in a transgenic mouse model. J Alzheimers Dis. 2003;5(4):301–8.
37.
Llorens-Marítin M, Jurado J, Hernández F, Ávila J. GSK-3β, a pivotal kinase in Alzheimer disease. Front Mol Neurosci. 2014;7.
38.
Wiseman AL, Briggs CA, Peritt A, Kapecki N, Peterson DA, Shim SS, et al. Lithium provides broad therapeutic benefits in an Alzheimer’s disease mouse model. J Alzheimers Dis. 2023;91(1):273–90.
39.
Sayas CL, Ávila J. GSK-3 and tau: a key duet in Alzheimer’s disease. Cells. 2021;10(4):721.
40.
Engel T, Goñi-Oliver P, Gómez de Barreda E, Lucas JJ, Hernández F, Avila J. Lithium, a potential protective drug in Alzheimer’s disease. Neurodegener Dis. 2008;5(3–4):247–9.
41.
Hernandez F, Lucas JJ, Avila J. GSK3 and tau: two convergence points in Alzheimer’s disease. J Alzheimers Dis. 2013;33(Suppl 1):S141–4.
42.
Hooper C, Markevich V, Plattner F, Killick R, Schofield E, Engel T, et al. Glycogen synthase kinase-3 inhibition is integral to long-term potentiation. Eur J Neurosci. 2007;25(1):81–6.
43.
Leeds PR, Yu F, Wang Z, Chiu C-T, Zhang Y, Leng Y, et al. A new avenue for lithium: intervention in traumatic brain injury. ACS Chem Neurosci. 2014;5(6):422–33.
44.
Malinski T. Nitric oxide and nitroxidative stress in Alzheimer’s disease. J Alzheimers Dis. 2007;11(2):207–18.
45.
Chalecka-Franaszek E, Chuang D-M. Lithium activates the serine/threonine kinase Akt-1 and suppresses glutamate-induced inhibition of Akt-1 activity in neurons. Proc Natl Acad Sci U S A. 1999;96(15):8745–50.
46.
Jope RS. Lithium and GSK-3: one inhibitor, two inhibitory actions, multiple outcomes. Trends Pharmacol Sci. 2003;24(9):441–3.
47.
Schaeffer EL, Catanozi S, West MJ, Gattaz WF. Stereological investigation of the CA1 pyramidal cell layer in untreated and lithium-treated 3xTg-AD and wild-type mice. Ann Anat. 2017;209:51–60.
48.
Alda M. Lithium in the treatment of bipolar disorder: pharmacology and pharmacogenetics. Mol Psychiatry. 2015;20(6):661–70.
49.
Mai L, Jope RS, Li X. BDNF-mediated signal transduction is modulated by GSK3beta and mood stabilizing agents. J Neurochem. 2002;82(1):75–83.
50.
Peineau S, Taghibiglou C, Bradley C, Wong TP, Liu L, Lu J, et al. LTP inhibits LTD in the hippocampus via regulation of GSK3beta. Neuron. 2007;53(5):703–17.
51.
Peineau S, Bradley C, Taghibiglou C, Doherty A, Bortolotto ZA, Wang YT, et al. The role of GSK-3 in synaptic plasticity. Br J Pharmacol. 2008;153(Suppl 1):S428–37.
52.
Wu Y-Y, Wang X, Tan L, Liu D, Liu X-H, Wang Q, et al. Lithium attenuates scopolamine-induced memory deficits with inhibition of GSK-3β and preservation of postsynaptic components. J Alzheimers Dis. 2013;37(3):515–27.
53.
Yazlovitskaya EM, Edwards E, Thotala D, Fu A, Osusky KL, Whetsell WOJr, et al. Lithium treatment prevents neurocognitive deficit resulting from cranial irradiation. Cancer Res. 2006;66(23):11179–86.
54.
Engmann O, Giese K. Crosstalk between Cdk5 and GSK3beta: implications for alzheimer’s disease. Front Mol Neurosci. 2009;2:2.
55.
Otth C, Concha II, Arendt T, Stieler J, Schliebs R, González-Billault C, et al. AbetaPP induces cdk5-dependent tau hyperphosphorylation in transgenic mice Tg2576. J Alzheimers Dis. 2002;4(5):417–30.
56.
Baumann K, Mandelkow E-M, Biernat J, Piwnica-Worms H, Mandelkow E. Abnormal Alzheimer-like phosphorylation of tau-protein by cyclin-dependent kinases cdk2 and cdk5. FEBS Lett. 1993;336(3):417–24.
57.
Tsai L-H, Lee M-S, Cruz J. Cdk5, a therapeutic target for Alzheimer’s disease?Biochim Biophys Acta. 2004;1697(1–2):137–42.
58.
Hashiguchi M, Saito T, Hisanaga S-i, Hashiguchi T. Truncation of CDK5 activator p35 induces intensive phosphorylation of Ser202/Thr205 of human tau. J Biol Chem. 2002;277(46):44525–30.
59.
Lee K-Y, Clark AW, Rosales JL, Chapman K, Fung T, Johnston RN. Elevated neuronal Cdc2-like kinase activity in the Alzheimer disease brain. Neurosci Res. 1999;34(1):21–9.
60.
Morishima-Kawashima M, Hasegawa M, Takio K, Suzuki M, Yoshida H, Titani K, et al. Proline-directed and non-proline-directed phosphorylation of PHF-tau. J Biol Chem. 1995;270(2):823–9.
61.
Pei J-J, Tanaka T, Tung Y-C, Braak E, Iqbal K, Grundke-Iqbal I. Distribution, levels, and activity of glycogen synthase kinase-3 in the Alzheimer disease brain. J Neuropathol Exp Neurol. 1997;56(1):70–8.
62.
Pei J-J, Grundke-Iqbal I, Iqbal K, Bogdanovic N, Winblad B, Cowburn RF. Accumulation of cyclin-dependent kinase 5 (cdk5) in neurons with early stages of Alzheimer’s disease neurofibrillary degeneration. Brain Res. 1998;797(2):267–77.
63.
Yamaguchi H, Ishiguro K, Uchida T, Takashima A, Lemere CA, Imahori K. Preferential labeling of Alzheimer neurofibrillary tangles with antisera for tau protein kinase (TPK) I/glycogen synthase kinase-3β and cyclin-dependent kinase 5, a component of TPK II. Acta Neuropathol. 1996;92(3):232–41.
64.
Morfini G, Szebenyi G, Brown H, Pant HC, Pigino G, DeBoer S, et al. A novel CDK5-dependent pathway for regulating GSK3 activity and kinesin-driven motility in neurons. EMBO J. 2004;23(11):2235–45.
65.
Plattner F, Angelo M, Giese KP. The roles of cyclin-dependent kinase 5 and glycogen synthase kinase 3 in tau hyperphosphorylation. J Biol Chem. 2006;281(35):25457–65.
66.
Tajes M, Gutierrez-Cuesta J, Folch J, Ferrer I, Caballero B, Smith MA, et al. Lithium treatment decreases activities of tau kinases in a murine model of senescence. J Neuropathol Exp Neurol. 2008;67(6):612–23.
67.
Damri O, Shemesh N, Agam G. Is there justification to treat neurodegenerative disorders by repurposing drugs? The case of Alzheimer’s disease, lithium, and autophagy. Int J Mol Sci. 2020;22(1):189.
68.
Hamano T, Enomoto S, Shirafuji N, Ikawa M, Yamamura O, Yen S-H, et al. Autophagy and tau protein. Int J Mol Sci. 2021;22(14):7475.
69.
Motoi Y, Shimada K, Ishiguro K, Hattori N. Lithium and autophagy. ACS Chem Neurosci. 2014;5(6):434–42.
70.
Bingol B, Sheng M. Deconstruction for reconstruction: the role of proteolysis in neural plasticity and disease. Neuron. 2011;69(1):22–32.
71.
Lieberman OJ, Sulzer D. The synaptic autophagy cycle. J Mol Biol. 2020;432(8):2589–604.
72.
Boland B, Kumar A, Lee S, Platt FM, Wegiel J, Yu WH, et al. Autophagy induction and autophagosome clearance in neurons: relationship to autophagic pathology in Alzheimer’s disease. J Neurosci. 2008;28(27):6926–37.
73.
Liang J-H, Jia J-P. Dysfunctional autophagy in Alzheimer’s disease: pathogenic roles and therapeutic implications. Neurosci Bull. 2014;30(2):308–16.
74.
Fang EF, Hou Y, Palikaras K, Adriaanse BA, Kerr JS, Yang B, et al. Mitophagy inhibits amyloid-β and tau pathology and reverses cognitive deficits in models of Alzheimer’s disease. Nat Neurosci. 2019;22(3):401–12.
75.
Sade Y, Toker L, Kara NZ, Einat H, Rapoport S, Moechars D, et al. IP3 accumulation and/or inositol depletion: two downstream lithium’s effects that may mediate its behavioral and cellular changes. Transl Psychiatry. 2016;6(12):e968–68.
76.
Avgerinos KI, Ferrucci L, Kapogiannis D. Effects of monoclonal antibodies against amyloid-β on clinical and biomarker outcomes and adverse event risks: a systematic review and meta-analysis of phase III RCTs in Alzheimer’s disease. Ageing Res Rev. 2021;68:101339.
77.
Herrup K. The case for rejecting the amyloid cascade hypothesis. Nat Neurosci. 2015;18(6):794–9.
78.
Kametani F, Hasegawa M. Reconsideration of amyloid hypothesis and tau hypothesis in Alzheimer’s disease. Front Neurosci. 2018;12:25.
79.
Ricciarelli R, Fedele E. The amyloid cascade hypothesis in Alzheimer’s disease: it’s time to change our mind. Curr Neuropharmacol. 2017;15(6):926–35.
80.
Kazee AM, Johnson EM. Alzheimer’s disease pathology in non-demented elderly. J Alzheimers Dis. 1998;1(2):81–9.
81.
Schmitt FA, Davis DG, Wekstein DR, Smith CD, Ashford JW, Markesbery WR. “Preclinical” AD revisited: neuropathology of cognitively normal older adults. Neurology. 2000;55(3):370–6.
82.
Whyte LS, Hemsley KM, Lau AA, Hassiotis S, Saito T, Saido TC, et al. Reduction in open field activity in the absence of memory deficits in the AppNL−G−F knock-in mouse model of Alzheimer’s disease. Behav Brain Res. 2018;336:177–81.
83.
Cavazzoni P. FDA’s decision to approve new treatment for Alzheimer’s disease; 2021. [cited 2023 3/3]. Available from: https://www.fda.gov/drugs/news-events-human-drugs/fdas-decision-approve-new-treatment-alzheimers-disease.
84.
Grant A. FDA grants accelerated approval for Alzheimer’s disease treatment; 2023. [cited 2023 3/3]. Available from: https://www.fda.gov/news-events/press-announcements/fda-grants-accelerated-approval-alzheimers-disease-treatment.
85.
Whitehouse P, Gandy S, Saini V, George DR, Larson EB, Alexander GC, et al. Making the case for accelerated withdrawal of aducanumab. J Alzheimers Dis. 2022;87(3):1003–7.
86.
Alzheimer’s Association Calcium Hypothesis Workgroup; Khachaturian ZS. Calcium Hypothesis of Alzheimer’s disease and brain aging: a framework for integrating new evidence into a comprehensive theory of pathogenesis. Alzheimers Dement. 2017;13(2):178–82.e17.
87.
Bezprozvanny I, Mattson MP. Neuronal calcium mishandling and the pathogenesis of Alzheimer’s disease. Trends Neurosci. 2008;31(9):454–63.
88.
Marx J. Alzheimer’s disease. Fresh evidence points to an old suspect: calcium. Science. 2007;318(5849):384–5.
89.
Canzoniero LMT, Snider BJ. Calcium in Alzheimer’s disease pathogenesis: too much, too little or in the wrong place?J Alzheimers Dis. 2005;8(2):147–54; discussion 209-15.
90.
Chami M, Checler F. Alterations of the endoplasmic reticulum (ER) calcium signaling molecular components in Alzheimer’s disease. Cells. 2020;9(12):2577.
91.
McDaid J, Mustaly-Kalimi S, Stutzmann GE. Ca2+ dyshomeostasis disrupts neuronal and synaptic function in Alzheimer’s disease. Cells. 2020;9(12):2655.
92.
Zhong W, Wu A, Berglund K, Gu X, Jiang MQ, Talati J, et al. Pathogenesis of sporadic Alzheimer’s disease by deficiency of NMDA receptor subunit GluN3A. Alzheimers Dement. 2022;18(2):222–39.
93.
Demuro A, Parker I, Stutzmann GE. Calcium signaling and amyloid toxicity in Alzheimer disease. J Biol Chem. 2010;285(17):12463–8.
94.
Dreses-Werringloer U, Lambert J-C, Vingtdeux V, Zhao H, Vais H, Siebert A, et al. A polymorphism in CALHM1 influences Ca2+ homeostasis, Aβ levels, and Alzheimer’s disease Risk. Cell. 2008;133(7):1149–61.
95.
Khachaturian ZS. Calcium, membranes, aging, and Alzheimer’s disease. Introduction and overview. Ann N Y Acad Sci. 1989;568(1):1–4.
96.
Khachaturian ZS. Calcium hypothesis of Alzheimer’s disease and brain aging. Ann N Y Acad Sci. 1994;747(1):1–11.
97.
Heck A, Fastenrath M, Coynel D, Auschra B, Bickel H, Freytag V, et al. Genetic analysis of association between calcium signaling and hippocampal activation, memory performance in the young and old, and risk for sporadic Alzheimer disease. JAMA Psychiatry. 2015;72(10):1029–36.
98.
Rubio-Moscardo F, Setó-Salvia N, Pera M, Bosch-Morató M, Plata C, Belbin O, et al. Rare variants in calcium homeostasis modulator 1 (CALHM1) found in early onset alzheimer’s disease patients alter calcium homeostasis. PLoS One. 2013;8(9):e74203.
99.
Yin J, VanDongen AM. Enhanced neuronal activity and asynchronous calcium transients revealed in a 3D organoid model of alzheimer’s disease. ACS Biomater Sci Eng. 2021;7(1):254–64.
100.
Krebs J, Agellon LB, Michalak M. Ca2+ homeostasis and endoplasmic reticulum (ER) stress: an integrated view of calcium signaling. Biochem Biophys Res Commun. 2015;460(1):114–21.
101.
Cheung K-H, Mei L, Mak D-OD, Hayashi I, Iwatsubo T, Kang DE, et al. Gain-of-function enhancement of IP3 receptor modal gating by familial Alzheimer’s disease–linked presenilin mutants in human cells and mouse neurons. Sci Signal. 2010;3(114):ra22.
102.
Egorova PA, Bezprozvanny IB. Inositol 1,4,5-trisphosphate receptors and neurodegenerative disorders. FEBS J. 2018;285(19):3547–65.
103.
Cheung K-H, Shineman D, Müller M, Cárdenas C, Mei L, Yang J, et al. Mechanism of Ca2+ disruption in Alzheimer’s disease by presenilin regulation of InsP3 receptor channel gating. Neuron. 2008;58(6):871–83.
104.
Leissring MA, Akbari Y, Fanger CM, Cahalan MD, Mattson MP, LaFerla FM. Capacitative calcium entry deficits and elevated luminal calcium content in mutant presenilin-1 knockin mice. J Cell Biol. 2000;149(4):793–8.
105.
Sugawara T, Hisatsune C, Le TD, Hashikawa T, Hirono M, Hattori M, et al. Type 1 inositol trisphosphate receptor Regulates cerebellar circuits by maintaining the spine morphology of Purkinje cells in adult mice. J Neurosci. 2013;33(30):12186–96.
106.
Stutzmann GE, Caccamo A, LaFerla FM, Parker I. Dysregulated IP3 signaling in cortical neurons of knock-in mice expressing an Alzheimer’s-linked mutation in Presenilin1 results in exaggerated Ca2+ signals and altered membrane excitability. J Neurosci. 2004;24(2):508–13.
107.
Stutzmann GE. The pathogenesis of Alzheimers disease—is it a lifelong “calciumopathy.”Neuroscientist. 2007;13(5):546–59.
108.
Shilling D, Müller M, Takano H, Mak DOD, Abel T, Coulter DA, et al. Suppression of InsP3 receptor-mediated Ca2+ signaling alleviates mutant presenilin-linked familial Alzheimer’s disease pathogenesis. J Neurosci. 2014;34(20):6910–23.
109.
Wang Z-J, Zhao F, Wang C-F, Zhang X-M, Xiao Y, Zhou F, et al. Xestospongin C, a reversible IP3 receptor antagonist, alleviates the cognitive and pathological impairments in APP/PS1 mice of Alzheimer’s disease. J Alzheimers Dis. 2019;72(4):1217–31.
110.
Gould TD, Chen G, Manji HK. Mood stabilizer psychopharmacology. Clin Neurosci Res. 2002;2(3–4):193–212.
111.
Gani D, Downes CP, Batty I, Bramham J. Lithium and myo-inositol homeostasis. Biochim Biophys Acta. 1993;1177(3):253–69.
112.
Naccarato WF, Ray RE, Wells WW. Biosynthesis of myo-inositol in rat mammary gland. Isolation and properties of the enzymes. Arch Biochem Biophys. 1974;164(1):194–201.
113.
Hallcher LM, Sherman WR. The effects of lithium ion and other agents on the activity of myo-inositol-1-phosphatase from bovine brain. J Biol Chem. 1980;255(22):10896–901.
114.
Inhorn RC, Majerus PW. Properties of inositol polyphosphate 1-phosphatase. J Biol Chem. 1988;263(28):14559–65.
115.
Ragan CI, Watling KJ, Gee NS, Aspley S, Jackson RG, Reid GG, et al. The dephosphorylation of inositol 1,4-bisphosphate to inositol in liver and brain involves two distinct Li+-sensitive enzymes and proceeds via inositol 4-phosphate. Biochem J. 1988;249(1):143–8.
116.
Berridge MJ, Downes CP, Hanley MR. Neural and developmental actions of lithium: a unifying hypothesis. Cell. 1989;59(3):411–9.
117.
Berridge MJ, Downes CP, Hanley MR. Lithium amplifies agonist-dependent phosphatidylinositol responses in brain and salivary glands. Biochem J. 1982;206(3):587–95.
118.
Ignarro LJ. Nitric oxide: a unique endogenous signaling molecule in vascular biology. Biosci Rep. 1999;19(2):51–71.
119.
Rameau GA, Chiu L-Y, Ziff EB. Bidirectional regulation of neuronal nitric-oxide synthase phosphorylation at serine 847 by the N-methyl-D-aspartate receptor. J Biol Chem. 2004;279(14):14307–14.
120.
Hashimoto R, Hough C, Nakazawa T, Yamamoto T, Chuang D-M. Lithium protection against glutamate excitotoxicity in rat cerebral cortical neurons: involvement of NMDA receptor inhibition possibly by decreasing NR2B tyrosine phosphorylation. J Neurochem. 2002;80(4):589–97.
121.
Nonaka S, Hough CJ, Chuang D-M. Chronic lithium treatment robustly protects neurons in the central nervous system against excitotoxicity by inhibiting N-methyl-D-aspartate receptor-mediated calcium influx. Proc Natl Acad Sci U S A. 1998;95(5):2642–7.
122.
Collingridge G. Synaptic plasticity. The role of NMDA receptors in learning and memory. Nature. 1987;330(6149):604–5.
123.
Pigott BM, Garthwaite J. Nitric oxide is required for L-type Ca2+ channel-dependent long-term potentiation in the hippocampus. Front Synaptic Neurosci. 2016;8:17.
124.
Boehning D, Snyder SH. Novel neural modulators. Annu Rev Neurosci. 2003;26(1):105–31.
125.
Garthwaite J. Concepts of neural nitric oxide-mediated transmission. Eur J Neurosci. 2008;27(11):2783–802.
126.
Simms BA, Zamponi GW. Neuronal voltage-gated calcium channels: structure, function, and dysfunction. Neuron. 2014;82(1):24–45.
127.
Chakroborty S, Kim J, Schneider C, West AR, Stutzmann GE. Nitric oxide signaling is recruited as a compensatory mechanism for sustaining synaptic plasticity in Alzheimer’s disease mice. J Neurosci. 2015;35(17):6893–902.
128.
Šimić G, Lucassen PJ, Krsnik Ž, Krušlin B, Kostović I, Winblad B, et al. nNOS expression in reactive astrocytes correlates with increased cell death related DNA damage in the hippocampus and entorhinal cortex in Alzheimer’s disease. Exp Neurol. 2000;165(1):12–26.
129.
Zhang Y-J, Xu Y-F, Liu Y-H, Yin J, Wang J-Z. Nitric oxide induces tau hyperphosphorylation via glycogen synthase kinase-3beta activation. FEBS Lett. 2005;579(27):6230–6.
130.
Gu Z, Nakamura T, Lipton SA. Redox reactions induced by nitrosative stress mediate protein misfolding and mitochondrial dysfunction in neurodegenerative diseases. Mol Neurobiol. 2010;41(2–3):55–72.
131.
Lüth H-J, Münch G, Arendt T. Aberrant expression of NOS isoforms in Alzheimer’s disease is structurally related to nitrotyrosine formation. Brain Res. 2002;953(1–2):135–43.
132.
Thorns V, Hansen L, Masliah E. nNOS expressing neurons in the entorhinal cortex and hippocampus are affected in patients with Alzheimer’s disease. Exp Neurol. 1998;150(1):14–20.
133.
Basselin M, Chang L, Bell JM, Rapoport SI. Chronic lithium chloride administration attenuates brain NMDA receptor-initiated signaling via arachidonic acid in unanesthetized rats. Neuropsychopharmacology. 2006;31(8):1659–74.
134.
Mohammad Jafari R, Ghahremani MH, Rahimi N, Shadboorestan A, Rashidian A, Esmaeili J, et al. The anticonvulsant activity and cerebral protection of chronic lithium chloride via NMDA receptor/nitric oxide and phospho-ERK. Brain Res Bull. 2018;137:1–9.
135.
Fioravante D, Regehr WG. Short-term forms of presynaptic plasticity. Curr Opin Neurobiol. 2011;21(2):269–74.
136.
Chakroborty S, Kim J, Schneider C, Jacobson C, Molgó J, Stutzmann GE. Early presynaptic and postsynaptic calcium signaling abnormalities mask underlying synaptic depression in presymptomatic Alzheimer’s disease mice. J Neurosci. 2012;32(24):8341–53.
137.
Deng X, Yao X-Q, Berglund K, Dong B, Ouedraogo D, Ghane MA, et al. Tuning protein dynamics to sense rapid endoplasmic-reticulum calcium dynamics. Angew Chem Int Ed Engl. 2021;60(43):23289–98.
138.
Angst J, Gamma A, Gerber-Werder R, Zarate CA, Manji HK. Does long-term medication with lithium, clozapine or antidepressants prevent or attenuate dementia in bipolar and depressed patients?Int J Psychiatry Clin Pract. 2007;11(1):2–8.
139.
Nunes PV, Forlenza OV, Gattaz WF. Lithium and risk for Alzheimer’s disease in elderly patients with bipolar disorder. Br J Psychiatry. 2007;190(4):359–60.
140.
Terao T, Nakano H, Inoue Y, Okamoto T, Nakamura J, Iwata N. Lithium and dementia: a preliminary study. Prog Neuro-Psychopharmacol Biol Psychiatry. 2006;30(6):1125–8.
141.
Forlenza OV, Diniz BS, Radanovic M, Santos FS, Talib LL, Gattaz WF. Disease-modifying properties of long-term lithium treatment for amnestic mild cognitive impairment: randomised controlled trial. Br J Psychiatry. 2011;198(5):351–6.
142.
Forlenza OV, Radanovic M, Talib LL, Gattaz WF. Clinical and biological effects of long-term lithium treatment in older adults with amnestic mild cognitive impairment: randomised clinical trial. Br J Psychiatry. 2019;215(5):668–74.
143.
Nunes MA, Viel TA, Buck HS. Microdose lithium treatment stabilized cognitive impairment in patients with Alzheimer’s disease. Curr Alzheimer Res. 2013;10(1):104–7.
144.
Gitlin M. Lithium side effects and toxicity: prevalence and management strategies. Int J Bipolar Disord. 2016;4(1):27.
145.
Post RM. The new news about lithium: an underutilized treatment in the United States. Neuropsychopharmacology. 2018;43(5):1174–9.
146.
Hampel H, Ewers M, Bürger K, Annas P, Mörtberg A, Bogstedt A, et al. Lithium trial in Alzheimer’s disease: a randomized, single-blind, placebo-controlled, multicenter 10-week study. J Clin Psychiatry. 2009;70(6):922–31.
147.
Kessing LV, Søndergård L, Forman JL, Andersen PK. Lithium treatment and risk of dementia. Arch Gen Psychiatry. 2008;65(11):1331–5.
148.
Kessing LV, Forman JL, Andersen PK. Does lithium protect against dementia?Bipolar Disord. 2010;12(1):87–94.
149.
Gerhard T, Devanand DP, Huang C, Crystal S, Olfson M. Lithium treatment and risk for dementia in adults with bipolar disorder: population-based cohort study. Br J Psychiatry. 2015;207(1):46–51.
150.
Kessing LV, Gerds TA, Knudsen NN, Jørgensen LF, Kristiansen SM, Voutchkova D, et al. Association of lithium in drinking water with the incidence of dementia. JAMA Psychiatry. 2017;74(10):1005–10.
151.
Fajardo VA, Fajardo VA, LeBlanc PJ, MacPherson REK. Examining the relationship between trace lithium in drinking water and the rising rates of age-adjusted Alzheimer’s disease mortality in Texas. J Alzheimers Dis. 2018;61(1):425–34.
152.
Cheng C, Zandi P, Stuart E, Lin CH, Su PY, Alexander GC, et al. Association between lithium use and risk of Alzheimer’s disease. J Clin Psychiatry. 2017;78(2):e139–45.
You do not currently have access to this content.