Alzheimer’s disease is the most common neurodegenerative disease, affecting ∼50% of humans by age 85. The disease process is associated with aggregation of the Aβ peptides, short 39–43 residue peptides generated through endoproteolytic cleavage of the Alzheimer’s precursor protein. While the process of aggregation of purified Aβ peptides in vitro is beginning to be well understood, little is known about this process in vivo. In the present study, we use the yeast Saccharomyces cerevisiae as a model system for studying Aβ-mediated aggregation in an organism in vivo. One ofthis yeast’s endogenous prions, Sup35/[PSI+], loses the ability to aggregate when the prion-forming domain of this protein is deleted. We show that insertion of Aβ peptide sequences in place of the original prion domain of this protein restores its ability to aggregate. However, the aggregates are qualitatively different from [PSI+] prions in their sensitivity to detergents and in their requirements on trans-acting factors that are normally needed for [PSI+] propagation. We conclude that we have established a useful new tool for studying the aggregation of Aβ peptides in an organism in vivo.

Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.