The abnormal aggregation of the microtubule-associated protein tau into paired helical filaments is one the hallmarks of Alzheimer’s disease. This aggregation is based in the partial formation of β-structure. In contrast, the soluble protein shows a mostly random coil structure, as judged by circular dichroism, Fourier transform infrared, X-ray scattering and biochemical assays. Here, we review the basis of the natively unstructured character of tau, as well as recent studies of residual structure and long-range interactions between different domains of the protein. Analysis of the primary structure reveals a very low content of hydrophobic amino acids and a high content of charged residues, both of which tend to counteract a well-folded globular state of proteins. In the case of tau, the low overall hydrophobicity is sufficient to explain the lack of folding. This is in contrast to other proteins which also carry an excess charge at physiological pH. By tryptophan scanning mutagenesis and fluorimetry we found that most of the sequence is solvent exposed. Analysis of the hydrodynamic radii confirms a mostly random coil structure of various tau isoforms and tau domains. The proteins can be further expanded by denaturation with GdHCl which indicates some global folding. This was substantiated by a FRET-based approach where the distances between different domains of tau were determined. The combined data show that tau is mostly disordered and flexible but tends to assume a hairpin-like overall fold which may be important in the transition to a pathological aggregate.

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.