Self-renewal, migration and differentiation of neural progenitor cells are controlled by a variety of pleiotropic signal molecules. Members of the morphogen family of Wnt molecules play a crucial role for developmental and repair mechanisms in the embryonic and adult nervous system. A strategy of disclosure of the role of different canonical (glycogen synthase kinase-3β/β-catenin-dependent) and noncanonical (Ca2+- and JNK-dependent) signal pathways for progenitor cell expansion and differentiations is illustrated at the example of the rat striatal progenitor cell line ST14A that is immortalized by stable retroviral transfection with a temperature-sensitive mutant of the SV40 large T antigen. A shift from permissive 33°C to nonpermissive 39°C leads to proliferation stop and start of differentiation into glial and neuronal cells. Investigation of expression of Wnts, Wnt receptors and Wnt-dependent signal pathway assay point to a stage-dependent involvement of canonical and noncanonical signaling in proliferation and differentiation of ST14A cells, whereby a mutual suppression of pathway activities is likely. Canonical Wnt molecules are not detected in proliferating and differentiating ST14A cells except Wnt2. The noncanonical Wnt molecules Wnt4, Wnt5a and Wnt11 are expressed in proliferating cells and increase during differentiation, whereas cellular β-catenin decreases in the early phase and is restored in the late phase of differentiation. Accumulation of β-catenin at the membrane in undifferentiated proliferating cells and its nuclear localization in nondividing undifferentiated cells under differentiation conditions argues for a distinct spatially regulated role of the molecule in the proliferation and early differentiation phase. Ca2+-dependent and JNK-dependent noncanonical Wnt signaling is not detected during differentiation of ST14A cells. Complete exploration of the role of Wnt pathways, for differentiation of the neural progenitor cells ST14A will require Wnt overexpression and exposure of ST14A cells to exogenous Wnts either with purified Wnts or by co-cultures with Wnt producers.

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.