Introduction: Alzheimer’s disease is a form of dementia which affects majority of the people. It is characterized by memory loss and other cognitive function disabilities and is one of the most challenging neurodegenerative disorders to treat because of its progressive nature. The disease affects millions of people all around the world, and the number of those affected is expanding every day. In the previous study, the 4-phthalimidobenzenesulfonamide derivatives were synthesized as AChE and BChE inhibitors, and here, we were aiming to further reporting in silico studies of these compounds for efficient drug discovery process and to find out the potential lead compounds. Methods: In silico characterization included density functional theory (DFT) studies, 3D-QSAR, ADMET properties, molecular docking, and molecular dynamic simulations. The geometries of all derivatives were optimized using B3LYP method and 6-311G basis set. Results: The findings of the current study revealed that 4-phthalimidobenzenesulfonamide derivatives exhibited a reactive electronic property which is essential for anticholinesterase activity. Moreover, optimized structures were subjected to molecular docking studies with targeted protein. The compounds 2c and 2g showed excellent binding score of −37.44 and −33.67 kJ/mol with BChE and AChE, respectively, and exhibited strong binding affinity. The potent derivatives produced stable complex with amino acid residues of active pocket of both BChE and AChE. The stability of protein-ligand complexes was determined by molecular dynamic simulation studies, and results were found in correlation with molecular docking findings. Conclusion: Findings of the current study suggested that these derivatives are potent inhibitors of cholinesterase enzyme.

1.
Kantarci
K
,
Avula
R
,
Senjem
ML
,
Samikoglu
AR
,
Zhang
B
,
Weigand
SD
,
.
Dementia with Lewy bodies and Alzheimer disease: neurodegenerative patterns characterized by DTI
.
Neurology
.
2010 Jun 1
;
74
(
22
):
1814
21
.
2.
Sanchez
PE
,
Zhu
L
,
Verret
L
,
Vossel
KA
,
Orr
AG
,
Cirrito
JR
,
.
Levetiracetam suppresses neuronal network dysfunction and reverses synaptic and cognitive deficits in an Alzheimer’s disease model
.
Proc Natl Acad Sci U S A
.
2012 Oct 16
;
109
(
42
):
E2895
903
.
3.
Peña-Longobardo
LM
,
Oliva-Moreno
J
.
Economic valuation and determinants of informal care to people with Alzheimer’s disease
.
Eur J Health Econ
.
2015 Jun
;
16
(
5
):
507
15
.
4.
Sanabria-Castro
A
,
Alvarado-Echeverría
I
,
Monge-Bonilla
C
.
Molecular pathogenesis of Alzheimer’s disease: an update
.
Ann Neurosci
.
2017
;
24
(
1
):
46
54
.
5.
Terry
AV
Jr
,
Buccafusco
JJ
.
The cholinergic hypothesis of age and Alzheimer’s disease-related cognitive deficits: recent challenges and their implications for novel drug development
.
J Pharmacol Exp Ther
.
2003 Sep 1
;
306
(
3
):
821
7
.
6.
Bhushan
I
,
Kour
M
,
Kour
G
,
Gupta
S
,
Sharma
S
,
Yadav
A
.
Alzheimer’s disease: causes & treatment–a review
.
Ann Biotechnol
.
2018
;
1
(
1
):
1002
.
7.
Colovic
MB
,
Krstic
DZ
,
Lazarevic-Pasti
TD
,
Bondzic
AM
,
Vasic
VM
.
Acetylcholinesterase inhibitors: pharmacology and toxicology
.
Curr Neuropharmacol
.
2013 May 1
;
11
(
3
):
315
35
.
8.
Rosenberry
TL
,
Brazzolotto
X
,
Macdonald
IR
,
Wandhammer
M
,
Trovaslet-Leroy
M
,
Darvesh
S
,
.
Comparison of the binding of reversible inhibitors to human butyrylcholinesterase and acetylcholinesterase: a crystallographic, kinetic and calorimetric study
.
Molecules
.
2017 Nov 29
;
22
(
12
):
2098
.
9.
Ollis
DL
,
Cheah
E
,
Cygler
M
,
Dijkstra
B
,
Frolow
F
,
Franken
SM
,
.
The alpha/beta hydrolase fold
.
Protein Eng
.
1992 Apr 1
;
5
(
3
):
197
211
.
10.
Fields
RD
,
Dutta
DJ
,
Belgrad
J
,
Robnett
M
.
Cholinergic signaling in myelination
.
Glia
.
2017 May
;
65
(
5
):
687
98
.
11.
Allderdice
PW
,
Gardner
HA
,
Galutira
D
,
Lockridge
O
,
LaDu
BN
,
McAlpine
PJ
.
The cloned butyrylcholinesterase (BCHE) gene maps to a single chromosome site, 3q26
.
Genomics
.
1991 Oct 1
;
11
(
2
):
452
4
.
12.
Wimo
A
,
Winblad
B
,
Aguero-Torres
H
,
von Strauss
E
.
The magnitude of dementia occurrence in the world
.
Alzheimer Dis Assoc Disord
.
2003 Apr 1
;
17
(
2
):
63
7
.
13.
Stanciu
GD
,
Luca
A
,
Rusu
RN
,
Bild
V
,
Beschea Chiriac
SI
,
Solcan
C
,
.
Alzheimer’s disease pharmacotherapy in relation to cholinergic system involvement
.
Biomolecules
.
2019 Dec 26
;
10
(
1
):
40
.
14.
Chauhan
NB
.
MicroRNA silencing: a promising therapy for Alzheimer’s disease
.
Neurosci Chron
.
2020
;
1
(
1
):
11
5
.
15.
Agrawal
M
,
Saraf
S
,
Saraf
S
,
Antimisiaris
SG
,
Chougule
MB
,
Shoyele
SA
,
.
Nose-to-brain drug delivery: an update on clinical challenges and progress towards approval of anti-Alzheimer drugs
.
J Control Release
.
2018 Jul 10
;
281
:
139
77
.
16.
Santos
MA
,
Chand
K
,
Chaves
S
.
Recent progress in multifunctional metal chelators as potential drugs for Alzheimer’s disease
.
Coord Chem Rev
.
2016 Nov 15
;
327–328
(
1
):
287
303
.
17.
Kushwaha
N
,
Kaushik
D
.
Recent advances and future prospects of phthalimide derivatives
.
J App Pharm Sci
.
2016 Mar 30
;
6
(
3
):
159
71
.
18.
Jana
S
,
Ganeshpurkar
A
,
Singh
SK
.
Multiple 3D-QSAR modeling, e-pharmacophore, molecular docking, and in vitro study to explore novel AChE inhibitors
.
RSC Adv
.
2018
;
8
(
69
):
39477
95
.
19.
Scozzafava
A
,
Owa
T
,
Mastrolorenzo
A
,
Supuran
CT
.
Anticancer and antiviral sulfonamides
.
Curr Med Chem
.
2003 Jun 1
;
10
(
11
):
925
53
.
20.
Durães
F
,
Pinto
M
,
Sousa
E
.
Old drugs as new treatments for neurodegenerative diseases
.
Pharmaceuticals
.
2018 May 11
;
11
(
2
):
44
.
21.
Eckroat
TJ
,
Manross
DL
,
Cowan
SC
.
Merged tacrine-based, multitarget-directed acetylcholinesterase inhibitors 2015: present–synthesis and biological activity
.
Int J Mol Sci
.
2020 Aug 19
;
21
(
17
):
5965
.
22.
Soyer
Z
,
Uysal
S
,
Parlar
S
,
Tarikogullari Dogan
AH
,
Alptuzun
V
.
Synthesis and molecular docking studies of some 4-phthalimidobenzenesulfonamide derivatives as acetylcholinesterase and butyrylcholinesterase inhibitors
.
J Enzyme Inhib Med Chem
.
2017 Jan 1
;
32
(
1
):
13
9
.
23.
Frisch
MJ
,
Trucks
GW
,
Schlegel
HB
,
Scuseria
GE
,
Robb
MA
,
Cheeseman
JR
,
.
Gaussian09, R. A. J. I.
Wallingford C. T
:
Gaussian Inc.
;
2009
.
Vol. 121
; p.
150
166
.
24.
Becke
AD
.
Density-functional thermochemistry III. The roLe of exact exchange
.
J Chem Phys
.
1993
;
98
(
7
):
5648
52
.
25.
Dennington
KR
,
Keith
T
,
Millam
J
.
GaussView version 5: Semichem Inc, Shawnee Mission, GaussView
.
2009
; version 5.
26.
Johari
J
,
Kianmehr
A
,
Mustafa
MR
,
Abubakar
S
,
Zandi
K
.
Antiviral activity of baicalein and quercetin against the Japanese encephalitis virus
.
Int J Mol Sci
.
2012 Dec 7
;
13
(
12
):
16785
95
.
27.
Appling
DR
.
Prism 4 GraphPad Software, Inc
.
San Diego, CA
. Available from: www.graphpad.com.
28.
Prashantha Kumar
B
,
Sankar
G
,
Nasir Baig
RB
,
Chandrashekaran
S
.
Novel Biginelli dihydropyrimidines with potential anticancer activity: a parallel synthesis and CoMSIA study
.
Eur J Med Chem
.
2009 Oct 1
;
44
(
10
):
4192
8
.
29.
Ragno
R
.
www.3d-qsar.com: a web portal that brings 3-D QSAR to all electronic devices–the Py-CoMFA web application as tool to build models from pre-aligned datasets
.
J Comput Aided Mol Des
.
2019 Sep
;
33
(
9
):
855
64
.
30.
Mirzaei
S
,
Ghodsi
R
,
Hadizadeh
F
,
Sahebkar
A
.
Corrigendum to “3D-QSAR-Based Pharmacophore Modeling, Virtual Screening, and Molecular Docking Studies for Identification of Tubulin Inhibitors with Potential Anticancer Activity”
.
Biomed Res Int
.
2022
;
2022
:
9761279
.
31.
Gupta
S
,
Fallarero
A
,
Järvinen
P
,
Karlsson
D
,
Johnson
MS
,
Vuorela
PM
,
.
Discovery of dual binding site acetylcholinesterase inhibitors identified by pharmacophore modeling and sequential virtual screening techniques
.
Bioorg Med Chem Lett
.
2011 Feb 15
;
21
(
4
):
1105
12
.
32.
Ioakimidis
L
,
Thoukydidis
L
,
Mirza
A
,
Naeem
S
,
Reynisson
J
.
Benchmarking the reliability of QikProp. Correlation between experimental and predicted values
.
QSAR Comb Sci
.
2008 Apr
;
27
(
4
):
445
56
.
33.
Xiong
G
,
Wu
Z
,
Yi
J
,
Fu
L
,
Yang
Z
,
Hsieh
C
,
.
ADMETlab 2.0: an integrated online platform for accurate and comprehensive predictions of ADMET properties
.
Nucleic Acids Res
.
2021 Jul 2
;
49
(
W1
):
W5
14
.
34.
Santos
GB
,
Ganesan
A
,
Emery
FS
.
Oral administration of peptide-based drugs: beyond Lipinski’s Rule
.
ChemMedChem
.
2016 Oct 19
;
11
(
20
):
2245
51
.
35.
Morris
GM
,
Lim-Wilby
M
.
Molecular docking
.
Methods Mol Biol
.
2008
;
443
:
365
82
.
36.
Iqbal
J
,
Al-Rashida
M
,
Babar
A
,
Hameed
A
,
Khan
MS
,
Munawar
MA
,
.
Cholinesterase inhibitory activities of N-Phenylthiazol-2-Amine derivatives and their molecular docking studies
.
Med Chem
.
2015 Aug 1
;
11
(
5
):
489
96
.
37.
Dongliang
Y
,
Ejaz
SA
,
Aziz
M
,
Saeed
A
,
Ejaz
S
,
Bilal
MS
,
.
Benzene-1, 3-diol derivatives as the inhibitors of butyrylcholinesterase: An emergent target of Alzheimer’s disease
.
J Serb Chem Soc
.
2022
;87(
3
):
293
306
.
38.
Nachon
F
,
Carletti
E
,
Ronco
C
,
Trovaslet
M
,
Nicolet
Y
,
Jean
L
,
.
Crystal structures of human cholinesterases in complex with huprine W and tacrine: elements of specificity for anti-Alzheimer’s drugs targeting acetyl-and butyryl-cholinesterase
.
Biochem J
.
2013 Aug 1
;
453
(
3
):
393
9
.
39.
Türkeş
C
,
Akocak
S
,
Işık
M
,
Lolak
N
,
Taslimi
P
,
Durgun
M
,
.
Novel inhibitors with sulfamethazine backbone: synthesis and biological study of multi-target cholinesterases and α-glucosidase inhibitors
.
J Biomol Struct Dyn
.
2021 Apr
:
1
13
.
40.
Larik
FA
,
Shah
MS
,
Saeed
A
,
Shah
HS
,
Channar
PA
,
Bolte
M
,
.
New cholinesterase inhibitors for Alzheimer’s disease: structure activity relationship, kinetics and molecular docking studies of 1–butanoyl–3–arylthiourea derivatives
.
Int J Biol macromol
.
2018 Sep 1
;
116
(
12
):
144
50
.
41.
Cousins
KR
.
Computer review of ChemDraw ultra 12.0
.
ACS Publications
;
2011
.
42.
MOE (Molecular Operating Environment)
.
Version 2015 10; Chemical Computing Group
.
43.
Morris
GM
,
Huey
R
,
Lindstrom
W
,
Sanner
MF
,
Belew
RK
,
Goodsell
DS
,
.
AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility
.
J Comput Chem
.
2009 Dec
;
30
(
16
):
2785
91
.
44.
Prieto-Martínez
FD
,
Arciniega
M
,
Medina-Franco
JL
.
Molecular docking: current advances and challenges
.
Tip Rev Espec Ciencias químico-Biol
.
2018
;
21
(
1
):
65
87
.
45.
Discovery studio visualizer software, version 4.0
. Available from: http://www.accelrys.com.
46.
Doblack
BN
,
Allis
T
,
Dávila
LP
.
Novel 3D/VR interactive environment for MD simulations, visualization and analysis
.
J Vis Exp
.
2014 Dec 18
;(
94
):
51384
.
47.
Aziz
M
,
Ejaz
SA
,
Tamam
N
,
Siddique
F
,
Riaz
N
,
Qais
FA
,
.
Identification of potent inhibitors of NEK7 protein using a comprehensive computational approach
.
Sci Rep
.
2022 Apr 18
;
12
(
1
):
6404
.
48.
Childers
MC
,
Daggett
V
.
Validating molecular dynamics simulations against experimental observables in light of underlying conformational ensembles
.
J Phys Chem B
.
2018 Jun 4
;
122
(
26
):
6673
89
.
49.
Xu
Y
,
He
Z
,
Liu
H
,
Chen
Y
,
Gao
Y
,
Zhang
S
,
.
3D-QSAR, molecular docking, and molecular dynamics simulation study of thieno [3, 2-b] pyrrole-5-carboxamide derivatives as LSD1 inhibitors
.
RSC Adv
.
2020
;
10
(
12
):
6927
43
.
You do not currently have access to this content.