The behavioral variant of frontotemporal dementia (bvFTD) is a neurodegenerative disease affecting people in their early sixties, characterized by dramatic changes in individual and social behavior. Despite the heterogeneity in the presentation of the clinical symptoms of bvFTD, some characteristic changes can be highlighted. Social disinhibition, changes in food preferences as well as loss of empathy and apathy are commonly described. This is accompanied by a characteristic and dramatic atrophy of the prefrontal cortex with the accumulation of protein aggregates in the neurons in this area. Several causative mutations in different genes have been discovered, allowing the development of transgenic animal models, especially mouse models. In mice, attention has been focused on the histopathological aspects of the pathology, but now studies are taking interest in assessing the behavioral phenotype of FTD models. Finding the right test corresponding to human symptoms is quite challenging, especially since the frontal cortex is much less developed in mice than in humans. Although challenging, the ability to detect relevant prefrontal cortex impairments in mice is crucial for therapeutic approaches. In this review, we aim to present the approaches that have been used to model the behavioral symptoms of FTD and to explore other relevant approaches to assess behavior involving the prefrontal cortex, as well as the deficits associated with FTD.

Ratnavalli E, Brayne C, Dawson K, Hodges JR: The prevalence of frontotemporal dementia. Neurology 2002;58:1615-1621.
Rohrer JD, Rosen HJ: Neuroimaging in frontotemporal dementia. Int Rev Psychiatry 2013;25:221-229.
Couto B, Manes F, Montañés P, Matallana D, Reyes P, Velasquez M, et al: Structural neuroimaging of social cognition in progressive non-fluent aphasia and behavioral variant of frontotemporal dementia. Front Hum Neurosci 2013;7:467.
Neary D, Snowden JS, Gustafson L, Passant U, Stuss D, Black S, et al: Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology 1998;51:1546-1554.
Rascovsky K, Hodges JR, Knopman D, Mendez MF, Kramer JH, Neuhaus J, et al: Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain 2011;134:2456-2477.
Pose M, Cetkovich M, Gleichgerrcht E, Ibáñez A, Torralva T, Manes F: The overlap of symptomatic dimensions between frontotemporal dementia and several psychiatric disorders that appear in late adulthood. Int Rev Psychiatry 2013;25:159-167.
Whitwell JL, Przybelski SA, Weigand SD, Ivnik RJ, Vemuri P, Gunter JL, et al: Distinct anatomical subtypes of the behavioural variant of frontotemporal dementia: a cluster analysis study. Brain 2009;132:2932-2946.
Brun A, Gustafson L: Limbic lobe involvement in presenile dementia. Arch Psychiatr Nervenkr 1978;226:79-93.
Broe M, Hodges JR, Schofield E, Shepherd CE, Kril JJ, Halliday GM: Staging disease severity in pathologically confirmed cases of frontotemporal dementia. Neurology 2003;60:1005-1011.
Rosen HJ, Gorno-Tempini ML, Goldman WP, Perry RJ, Schuff N, Weiner M, et al: Patterns of brain atrophy in frontotemporal dementia and semantic dementia. Neurology 2002;58:198-208.
Tartaglia MC, Zhang Y, Racine C, Laluz V, Neuhaus J, Chao L, et al: Executive dysfunction in frontotemporal dementia is related to abnormalities in frontal white matter tracts. J Neurol 2012;259:1071-1080.
Franceschi M, Anchisi D, Pelati O, Zuffi M, Matarrese M, Moresco RM, et al: Glucose metabolism and serotonin receptors in the frontotemporal lobe degeneration. Ann Neurol 2005;57:216-225.
Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H, et al: Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 2007;27:2349-2356.
Jilka SR, Scott G, Ham T, Pickering A, Bonnelle V, Braga RM, et al: Damage to the salience network and interactions with the default mode network. J Neurosci 2014;34:10798-10807.
Zhou J, Greicius MD, Gennatas ED, Growdon ME, Jang JY, Rabinovici GD, et al: Divergent network connectivity changes in behavioural variant frontotemporal dementia and Alzheimer's disease. Brain 2010;133:1352-1367.
Farb NAS, Grady CL, Strother S, Tang-Wai DF, Masellis M, Black S, et al: Abnormal network connectivity in frontotemporal dementia: evidence for prefrontal isolation. Cortex 2013;49:1856-1873.
Filippi M, Agosta F, Scola E, Canu E, Magnani G, Marcone A, et al: Functional network connectivity in the behavioral variant of frontotemporal dementia. Cortex 2013;49:2389-2401.
Schroeter ML, Raczka K, Neumann J, Yves von Cramon D: Towards a nosology for frontotemporal lobar degenerations - a meta-analysis involving 267 subjects. Neuroimage 2007;36:497-510.
Boccardi M, Sabattoli F, Laakso MP, Testa C, Rossi R, Beltramello A, et al: Frontotemporal dementia as a neural system disease. Neurobiol Aging 2005;26:37-44.
Diehl-Schmid J, Grimmer T, Drzezga A, Bornschein S, Riemenschneider M, Förstl H, et al: Decline of cerebral glucose metabolism in frontotemporal dementia: a longitudinal 18F-FDG-PET-study. Neurobiol Aging 2007;28:42-50.
Ling S-C, Polymenidou M, Cleveland DW: Converging mechanisms in ALS and FTD: disrupted RNA and protein homeostasis. Neuron 2013;79:416-438.
Hukema RK, Riemslagh FW, Melhem S, van der Linde HC, Severijnen L-A, Edbauer D, et al: A new inducible transgenic mouse model for C9orf72-associated GGGGCC repeat expansion supports a gain-of-function mechanism in C9orf72 associated ALS and FTD. Acta Neuropathol Commun 2014;2:166.
Chew J, Gendron TF, Prudencio M, Sasaguri H, Zhang Y-J, Castanedes-Casey M, et al: C9ORF72 repeat expansions in mice cause TDP-43 pathology, neuronal loss, and behavioral deficits. Science 2015;348:1151-1154.
Roberson ED: Mouse models of frontotemporal dementia. Ann Neurol 2012;72:837-849.
Dubois B, Slachevsky A, Litvan I, Pillon B: The FAB: a Frontal Assessment Battery at bedside. Neurology 2000;55:1621-1626.
Drewe EA: Go-no go learning after frontal lobe lesions in humans. Cortex 1975;11:8-16.
Zamboni G, Huey ED, Krueger F, Nichelli PF, Grafman J: Apathy and disinhibition in frontotemporal dementia: insights into their neural correlates. Neurology 2008;71:736-742.
Masneuf S, Lowery-Gionta E, Colacicco G, Pleil KE, Li C, Crowley N, et al: Glutamatergic mechanisms associated with stress-induced amygdala excitability and anxiety-related behavior. Neuropharmacology 2014;85:190-197.
Yin F, Dumont M, Banerjee R, Ma Y, Li H, Lin MT, et al: Behavioral deficits and progressive neuropathology in progranulin-deficient mice: a mouse model of frontotemporal dementia. FASEB J 2010;24:4639-4647.
Gascon E, Lynch K, Ruan H, Almeida S, Verheyden JM, Seeley WW, et al: Alterations in microRNA-124 and AMPA receptors contribute to social behavioral deficits in frontotemporal dementia. Nat Med 2014;20:1444-1451.
Warmus BA, Sekar DR, McCutchen E, Schellenberg GD, Roberts RC, McMahon LL, et al: Tau-mediated NMDA receptor impairment underlies dysfunction of a selectively vulnerable network in a mouse model of frontotemporal dementia. J Neurosci 2014;34:16482-16495.
Cook C, Dunmore JH, Murray ME, Scheffel K, Shukoor N, Tong J, et al: Severe amygdala dysfunction in a MAPT transgenic mouse model of frontotemporal dementia. Neurobiol Aging 2014;35:1769-1777.
Egashira N, Iwasaki K, Takashima A, Watanabe T, Kawabe H, Matsuda T, et al: Altered depression-related behavior and neurochemical changes in serotonergic neurons in mutant R406W human tau transgenic mice. Brain Res 2005;1059:7-12.
Kayasuga Y, Chiba S, Suzuki M, Kikusui T, Matsuwaki T, Yamanouchi K, et al: Alteration of behavioural phenotype in mice by targeted disruption of the progranulin gene. Behav Brain Res 2007;185:110-118.
Hoefer M, Allison SC, Schauer GF, Neuhaus JM, Hall J, Dang JN, et al: Fear conditioning in frontotemporal lobar degeneration and Alzheimer's disease. Brain 2008;131:1646-1657.
Filiano AJ, Martens LH, Young AH, Warmus BA, Zhou P, Diaz-Ramirez G, et al: Dissociation of frontotemporal dementia-related deficits and neuroinflammation in progranulin haploinsufficient mice. J Neurosci 2013;33:5352-5361.
Tatebayashi Y, Miyasaka T, Chui D-H, Akagi T, Mishima K, Iwasaki K, et al: Tau filament formation and associative memory deficit in aged mice expressing mutant (R406W) human tau. Proc Natl Acad Sci USA 2002;99:13896-13901.
Robbins TW: The 5-choice serial reaction time task: behavioural pharmacology and functional neurochemistry. Psychopharmacology (Berl) 2002;163:362-380.
Lambourne SL, Humby T, Isles AR, Emson PC, Spillantini MG, Wilkinson LS: Impairments in impulse control in mice transgenic for the human FTDP-17 tauV337M mutation are exacerbated by age. Hum Mol Genet 2007;16:1708-1719.
Gubner NR, Wilhelm CJ, Phillips TJ, Mitchell SH: Strain differences in behavioral inhibition in a Go/No-go task demonstrated using 15 inbred mouse strains. Alcohol Clin Exp Res 2010;34:1353-1362.
Abelaira HM, Réus GZ, Quevedo J: Animal models as tools to study the pathophysiology of depression. Rev Bras Psiquiatr 2013;35(suppl 2):S112-S120.
Belzung C: Innovative drugs to treat depression: did animal models fail to be predictive or did clinical trials fail to detect effects? Neuropsychopharmacology 2014;39:1041-1051.
Keane J, Calder AJ, Hodges JR, Young AW: Face and emotion processing in frontal variant frontotemporal dementia. Neuropsychologia 2002;40:655-665.
Werner KH, Roberts NA, Rosen HJ, Dean DL, Kramer JH, Weiner MW, et al: Emotional reactivity and emotion recognition in frontotemporal lobar degeneration. Neurology 2007;69:148-155.
Rosen HJ, Pace-Savitsky K, Perry RJ, Kramer JH, Miller BL, Levenson RW: Recognition of emotion in the frontal and temporal variants of frontotemporal dementia. Dement Geriatr Cogn Disord 2004;17:277-281.
Adolphs R, Tranel D, Damasio H, Damasio A: Impaired recognition of emotion in facial expressions following bilateral damage to the human amygdala. Nature 1994;372:669-672.
Haxby J, Hoffman E, Gobbini M: The distributed human neural system for face perception. Trends Cogn Sci 2000;4:223-233.
Kipps CM, Nestor PJ, Acosta-Cabronero J, Arnold R, Hodges JR: Understanding social dysfunction in the behavioural variant of frontotemporal dementia: the role of emotion and sarcasm processing. Brain 2009;132:592-603.
Le Bouc R, Lenfant P, Delbeuck X, Ravasi L, Lebert F, Semah F, et al: My belief or yours? Differential theory of mind deficits in frontotemporal dementia and Alzheimer's disease. Brain 2012;135:3026-3038.
Duval C, Bejanin A, Piolino P, Laisney M, de La Sayette V, Belliard S, et al: Theory of mind impairments in patients with semantic dementia. Brain 2012;135:228-241.
Hecht EE, Patterson R, Barbey AK: What can other animals tell us about human social cognition? An evolutionary perspective on reflective and reflexive processing. Front Hum Neurosci 2012;6:224.
Jeon D, Kim S, Chetana M, Jo D, Ruley HE, Lin S-Y, et al: Observational fear learning involves affective pain system and Cav1.2 Ca2+ channels in ACC. Nat Neurosci 2010;13:482-488.
Pissiota A, Frans O, Michelgård A, Appel L, Långström B, Flaten MA, et al: Amygdala and anterior cingulate cortex activation during affective startle modulation: a PET study of fear. Eur J Neurosci 2003;18:1325-1331.
Cremers HR, Demenescu LR, Aleman A, Renken R, van Tol M-J, van der Wee NJA, et al: Neuroticism modulates amygdala-prefrontal connectivity in response to negative emotional facial expressions. Neuroimage 2010;49:963-970.
Ghoshal N, Dearborn JT, Wozniak DF, Cairns NJ: Core features of frontotemporal dementia recapitulated in progranulin knockout mice. Neurobiol Dis 2012;45:395-408.
Petkau TL, Neal SJ, Milnerwood A, Mew A, Hill AM, Orban P, et al: Synaptic dysfunction in progranulin-deficient mice. Neurobiol Dis 2012;45:711-722.
Nyatsanza S, Shetty T, Gregory C, Lough S, Dawson K, Hodges JR: A study of stereotypic behaviours in Alzheimer's disease and frontal and temporal variant frontotemporal dementia. J Neurol Neurosurg Psychiatry 2003;74:1398-1402.
Prioni S, Fetoni V, Barocco F, Redaelli V, Falcone C, Soliveri P, et al: Stereotypic behaviors in degenerative dementias. J Neurol 2012;259:2452-2459.
Crawley JN: Mouse behavioral assays relevant to the symptoms of autism. Brain Pathol 2007;17:448-459.
Langen M, Kas MJH, Staal WG, van Engeland H, Durston S: The neurobiology of repetitive behavior: of mice. Neurosci Biobehav Rev 2011;35:345-355.
Powell SB, Newman HA, Pendergast JF, Lewis MH: A rodent model of spontaneous stereotypy. Initial characterization of developmental, environmental, and neurobiological factors. Physiol Behav 1999;66:355-363.
Piguet O: Eating disturbance in behavioural-variant frontotemporal dementia. J Mol Neurosci 2011;45:589-593.
Woolley JD, Gorno-Tempini M-L, Seeley WW, Rankin K, Lee SS, Matthews BR, et al: Binge eating is associated with right orbitofrontal-insular-striatal atrophy in frontotemporal dementia. Neurology 2007;69:1424-1433.
Piguet O, Petersén A, Yin Ka Lam B, Gabery S, Murphy K, Hodges JR, et al: Eating and hypothalamus changes in behavioral-variant frontotemporal dementia. Ann Neurol 2011;69:312-319.
Woolley JD, Khan BK, Natesan A, Karydas A, Dallman M, Havel P, et al: Satiety-related hormonal dysregulation in behavioral variant frontotemporal dementia. Neurology 2014;82:512-520.
Rhodes JS, Best K, Belknap JK, Finn DA, Crabbe JC: Evaluation of a simple model of ethanol drinking to intoxication in C57BL/6J mice. Physiol Behav 2005;84:53-63.
Gremel CM, Young EA, Cunningham CL: Blockade of opioid receptors in anterior cingulate cortex disrupts ethanol-seeking behavior in mice. Behav Brain Res 2011;219:358-362.
Johns EK, Phillips NA, Belleville S, Goupil D, Babins L, Kelner N, et al: Executive functions in frontotemporal dementia and Lewy body dementia. Neuropsychology 2009;23:765-777.
Bozeat S: Which neuropsychiatric and behavioural features distinguish frontal and temporal variants of frontotemporal dementia from Alzheimer's disease? J Neurol Neurosurg Psychiatry 2000;69:178-186.
Heidler-Gary J, Gottesman R, Newhart M, Chang S, Ken L, Hillis AE: Utility of behavioral versus cognitive measures in differentiating between subtypes of frontotemporal lobar degeneration and Alzheimer's disease. Dement Geriatr Cogn Disord 2007;23:184-193.
Harciarek M, Jodzio K: Neuropsychological differences between frontotemporal dementia and Alzheimer's disease: a review. Neuropsychol Rev 2005;15:131-145.
Moy SS, Nadler JJ, Young NB, Perez A, Holloway LP, Barbaro RP, et al: Mouse behavioral tasks relevant to autism: phenotypes of 10 inbred strains. Behav Brain Res 2007;176:4-20.
Jiang-Xie L-F, Liao H-M, Chen C-H, Chen Y-T, Ho S-Y, Lu D-H, et al: Autism-associated gene Dlgap2 mutant mice demonstrate exacerbated aggressive behaviors and orbitofrontal cortex deficits. Mol Autism 2014;5:32.
Colacicco G, Welzl H, Lipp H-P, Würbel H: Attentional set-shifting in mice: modification of a rat paradigm, and evidence for strain-dependent variation. Behav Brain Res 2002;132:95-102.
Bissonette GB, Powell EM: Reversal learning and attentional set-shifting in mice. Neuropharmacology 2012;62:1168-1174.
Possin KL, Feigenbaum D, Rankin KP, Smith GE, Boxer AL, Wood K, et al: Dissociable executive functions in behavioral variant frontotemporal and Alzheimer dementias. Neurology 2013;80:2180-2185.
Haddon JE, Killcross S: Prefrontal cortex lesions disrupt the contextual control of response conflict. J Neurosci 2006;26:2933-2940.
Reichelt AC, Killcross S, Wilkinson LS, Humby T, Good MA: Transgenic expression of the FTDP-17 tauV337M mutation in brain dissociates components of executive function in mice. Neurobiol Learn Mem 2013;104:73-81.
De Souza LC, Chupin M, Bertoux M, Lehéricy S, Dubois B, Lamari F, et al: Is hippocampal volume a good marker to differentiate Alzheimer's disease from frontotemporal dementia? J Alzheimers Dis 2013;36:57-66.
Muñoz-Ruiz MÁ, Hartikainen P, Koikkalainen J, Wolz R, Julkunen V, Niskanen E, et al: Structural MRI in frontotemporal dementia: comparisons between hippocampal volumetry, tensor-based morphometry and voxel-based morphometry. PLoS One 2012;7:e52531.
Barnes J, Whitwell JL, Frost C, Josephs KA, Rossor M, Fox NC: Measurements of the amygdala and hippocampus in pathologically confirmed Alzheimer disease and frontotemporal lobar degeneration. Arch Neurol 2006;63:1434-1439.
Laakso MP, Frisoni GB, Könönen M, Mikkonen M, Beltramello A, Geroldi C, et al: Hippocampus and entorhinal cortex in frontotemporal dementia and Alzheimer's disease: a morphometric MRI study. Biol Psychiatry 2000;47:1056-1063.
Lindberg O, Walterfang M, Looi JCL, Malykhin N, Ostberg P, Zandbelt B, et al: Hippocampal shape analysis in Alzheimer's disease and frontotemporal lobar degeneration subtypes. J Alzheimers Dis 2012;30:355-365.
D'Hooge R, De Deyn PP: Applications of the Morris water maze in the study of learning and memory. Brain Res Brain Res Rev 2001;36:60-90.
Pompl PN, Mullan MJ, Bjugstad K, Arendash GW: Adaptation of the circular platform spatial memory task for mice: use in detecting cognitive impairment in the APP(SW) transgenic mouse model for Alzheimer's disease. J Neurosci Methods 1999;87:87-95.
Tsai K-J, Yang C-H, Fang Y-H, Cho K-H, Chien W-L, Wang W-T, et al: Elevated expression of TDP-43 in the forebrain of mice is sufficient to cause neurological and pathological phenotypes mimicking FTLD-U. J Exp Med 2010;207:1661-1673.
Swarup V, Phaneuf D, Bareil C, Robertson J, Rouleau GA, Kriz J, et al: Pathological hallmarks of amyotrophic lateral sclerosis/frontotemporal lobar degeneration in transgenic mice produced with TDP-43 genomic fragments. Brain 2011;134:2610-2626.
Levenga J, Krishnamurthy P, Rajamohamedsait H, Wong H, Franke TF, Cain P, et al: Tau pathology induces loss of GABAergic interneurons leading to altered synaptic plasticity and behavioral impairments. Acta Neuropathol Commun 2013;1:34.
Rodriguez-Ortiz CJ, Hoshino H, Cheng D, Liu-Yescevitz L, Blurton-Jones M, Wolozin B, et al: Neuronal-specific overexpression of a mutant valosin-containing protein associated with IBMPFD promotes aberrant ubiquitin and TDP-43 accumulation and cognitive dysfunction in transgenic mice. Am J Pathol 2013;183:504-515.
Yassine N, Lazaris A, Dorner-Ciossek C, Després O, Meyer L, Maitre M, et al: Detecting spatial memory deficits beyond blindness in tg2576 Alzheimer mice. Neurobiol Aging 2013;34:716-730.
Cummings JL, Schneider E, Tariot PN, Graham SM: Behavioral effects of memantine in Alzheimer disease patients receiving donepezil treatment. Neurology 2006;67:57-63.
Boxer AL, Knopman DS, Kaufer DI, Grossman M, Onyike C, Graf-Radford N, et al: Memantine in patients with frontotemporal lobar degeneration: a multicentre, randomised, double-blind, placebo-controlled trial. Lancet Neurol 2013;12:149-156.
Vercelletto M, Boutoleau-Bretonnière C, Volteau C, Puel M, Auriacombe S, Sarazin M, et al: Memantine in behavioral variant frontotemporal dementia: negative results. J Alzheimers Dis 2011;23:749-759.
Hodges JR: Hope abandoned: memantine therapy in frontotemporal dementia. Lancet Neurol 2013;12:121-123.
Lebert F, Stekke W, Hasenbroekx C, Pasquier F: Frontotemporal dementia: a randomised, controlled trial with trazodone. Dement Geriatr Cogn Disord 2004;17:355-359.
Kumar A, Garg R: Possible role of trazodone and imipramine in sleep deprivation-induced anxiety-like behavior and oxidative damage in mice. Methods Find Exp Clin Pharmacol 2009;31:383-387.
Ittner LM, Halliday GM, Kril JJ, Götz J, Hodges JR, Kiernan MC: FTD and ALS-translating mouse studies into clinical trials. Nat Rev Neurol 2015;11:360-366.
Dawson HN, Cantillana V, Chen L, Vitek MP: The tau N279K exon 10 splicing mutation recapitulates frontotemporal dementia and parkinsonism linked to chromosome 17 tauopathy in a mouse model. J Neurosci 2007;27:9155-9168.
Langen M, Durston S, Kas MJH, van Engeland H, Staal WG: The neurobiology of repetitive behavior: …and men. Neurosci Biobehav Rev 2011;35:356-365.
Cheetham A, Allen NB, Whittle S, Simmons J, Yücel M, Lubman DI: Volumetric differences in the anterior cingulate cortex prospectively predict alcohol-related problems in adolescence. Psychopharmacology (Berl) 2014;231:1731-1742.
Mashhoon Y, Czerkawski C, Crowley DJ, Cohen-Gilbert JE, Sneider JT, Silveri MM: Binge alcohol consumption in emerging adults: anterior cingulate cortical ‘thinness' is associated with alcohol use patterns. Alcohol Clin Exp Res 2014;38:1955-1964.
Anand BK, Brobeck JR: Localization of a ‘feeding center' in the hypothalamus of the rat. Proc Soc Exp Biol Med 1951;77:323-324.
Gremel CM, Cunningham CL: Involvement of amygdala dopamine and nucleus accumbens NMDA receptors in ethanol-seeking behavior in mice. Neuropsychopharmacology 2008;34:1443-1453.
Lumme V, Aalto S, Ilonen T, Någren K, Hietala J: Dopamine D2/D3 receptor binding in the anterior cingulate cortex and executive functioning. Psychiatry Res 2007;156:69-74.
Klanker M, Feenstra M, Denys D: Dopaminergic control of cognitive flexibility in humans and animals. Front Neurosci 2013;7:201.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.