Background and Aims: N-truncated pyroglutamate (pGlu)-amyloid-β [Aβ(3-40/42)] peptides are key components that promote Aβ peptide accumulation, leading to neurodegeneration and memory loss in Alzheimer's disease. Because Aβ deposition in the brain occurs in an activity-dependent manner, it is important to define the subcellular organelle for pGlu-Aβ(3-40/42) production by glutaminyl cyclase (QC) and their colocalization with full-length Aβ(1-40/42) peptides for activity-dependent, regulated secretion. Therefore, the objective of this study was to investigate the hypothesis that pGlu-Aβ and QC are colocalized with Aβ in dense-core secretory vesicles (DCSV) for activity-dependent secretion with neurotransmitters. Methods: Purified DCSV were assessed for pGlu-Aβ(3-40/42), Aβ(1-40/42), QC, and neurotransmitter secretion. Neuron-like chromaffin cells were analyzed for cosecretion of pGlu-Aβ, QC, Aβ, and neuropeptides. The cells were treated with a QC inhibitor, and pGlu-Aβ production was measured. Human neuroblastoma cells were also examined for pGlu-Aβ and QC secretion. Results: Isolated DCSV contain pGlu-Aβ(3-40/42), QC, and Aβ(1-40/42) with neuropeptide and catecholamine neurotransmitters. Cellular pGlu-Aβ and QC undergo activity-dependent cosecretion with Aβ and enkephalin and galanin neurotransmitters. The QC inhibitor decreased the level of secreted pGlu-Aβ. The human neuroblastoma cells displayed regulated secretion of pGlu-Aβ that was colocalized with QC. Conclusions: pGlu-Aβ and QC are present with Aβ in DCSV and undergo activity-dependent, regulated cosecretion with neurotransmitters.

1.
Selkoe DJ: Alzheimer's disease: genes, proteins, and therapy. Physiol Rev 2001;81:741-766.
2.
Gandy S, Martins RN, Buxbaum J: Molecular and cellular basis for anti-amyloid therapy in Alzheimer's disease. Alzheimer Dis Assoc Disord 2003;17:259-266.
3.
Crews L, Masliah E: Molecular mechanisms of neurodegeneration in Alzheimer's disease. Hum Mol Genet 2010;19:R12-R20.
4.
Huang Y, Mucke L: Alzheimer mechanisms and therapeutic strategies. Cell 2012;16:1204-1222.
5.
Saido TC, Iwatsubo T, Mann DM, Shimada H, Ihara Y, Kawashima S: Dominant and differential deposition of distinct β-amyloid peptide species, AβN3(pE), in senile plaques. Neuron 1995;14:457-466.
6.
Kuo YM, Emmerling MR, Woods AS, Cotter RJ, Roher AE: Isolation, chemical characterization, and quantitation of Aβ 3-pyroglutamyl peptide from neuritic plaques and vascular amyloid deposits. Biochem Biophys Res Commun 1997;237:188-191.
7.
Harigaya Y, Saido TC, Eckman CB, Prada CM, Shoji M, Younkin SG: Amyloid beta protein starting pyroglutamate at position 3 is a major component of the amyloid deposits in the Alzheimer's disease brain. Biochem Biophys Res Commun 2000;276:422-427.
8.
Schilling S, Lauber T, Schaupp M, Manhart S, Scheel E, Böhm G, Demuth HU: On the seeding and oligomerization of pGlu-amyloid peptides (in vitro). Biochemistry 2006;45:12393-12399.
9.
Nussbaum JM, Schilling S, Cynis H, Silva A, Swanson E, Wangsanut T, Tayler K, Wiltgen B, Hatami A, Rönicke R, Reymann K, Hutter-Paier B, Alexandru A, Jagla W, Graubner S, Glabe CG, Demuth HU, Bloom GS: Prion-like behaviour and tau-dependent cytotoxicity of pyroglutamylated amyloid-β. Nature 2012;485:651-655.
10.
Wittnam JL, Portelius E, Zetterberg H, Gustavsson MK, Schilling S, Koch B, Demuth HU, Blennow K, Wirths O, Bayer TA: Pyroglutamate amyloid β (Aβ) aggravates behavioral deficits in transgenic amyloid mouse model for Alzheimer disease. J Biol Chem 2012;287:8154-8162.
11.
Cynis H, Scheel E, Saido TC, Schilling S, Demuth HU: Amyloidogenic processing of amyloid precursor protein: evidence of a pivotal role of glutaminyl cyclase in generation of pyroglutamate-modified amyloid-β. Biochemistry 2008;47:7405-7413.
12.
Jawhar S, Wirths O, Schilling S, Graubner S, Demuth HU, Bayer TA: Overexpression of glutaminyl cyclase, the enzyme responsible for pyroglutamate Aβ formation, induces behavioral deficits, and glutaminyl cyclase knock-out rescues the behavioral phenotype in 5XFAD mice. J Biol Chem 2011;286:4454-4460.
13.
Schilling S, Zeitschel U, Hoffmann T, Heiser U, Francke M, Kehlen A, Holzer M, Hutter-Paier B, Prokesch M, Windisch M, Jagla W, Schlenzig D, Lindner C, Rudolph T, Reuter G, Cynis H, Montag D, Demuth HU, Rossner S: Glutaminyl cyclase inhibition attenuates pyroglutamate Aβ and Alzheimer's disease-like pathology. Nat Med 2008;14:1106-1111.
14.
Schilling S, Appl T, Hoffmann T, Cynis H, Schulz K, Jagla W, Friedrich D, Wermann M, Buchholz M, Heiser U, von Hörsten S, Demuth HU: Inhibition of glutaminyl cyclase prevents pGlu-Aβ formation after intracortical/hippocampal microinjection in vivo/in situ. J Neurochem 2008;106:1225-1236.
15.
Nitsch RM, Slack BE, Wurtman RJ, Growdon JH: Release of Alzheimer's amyloid precursor derivatives by activation of muscarinic acetylcholine receptors. Science 1992;258:304-307.
16.
Nitsch RJ, Farber SA, Growdon JH, Wurtman RJ: Release of amyloid β-protein precursor derivatives by electrical depolarization of rat hippocampal slices. Proc Natl Acad Sci USA 1993;90:5191-5193.
17.
Efthimiopoulos S, Vassilacopoulou D, Rippellino JA, Tezapsidis N, Robakis NK: Cholinergic agonists stimulate secretion of soluble full-length amyloid precursor protein in neuroendocrine cells. Proc Natl Acad Sci USA 1996;93:8046-8050.
18.
Jolly-Tornetta C, Gao ZY, Lee VM, Wolf BA: Regulation of amyloid precursor protein secretion by glutamate receptors in human Ntera 2 neurons. J Biol Chem 1998;272:140015-140021.
19.
Hook VYH, Toneff T, Aaron W, Yasothornsrikul S, Bundey R, Reisine T: β-Amyloid peptide in regulated secretory vesicles of chromaffin cells: evidence for multiple cysteine proteolytic activities in distinct pathways for β-secretase activity in chromaffin vesicles. J Neurochem 2002;81:237-256.
20.
Kamenetz F, Tomita T, Hsieh H, Seabrok G, Borchelt D, Iwatsubo T, Sisodia S, Malinow R: APP processing and synaptic function. Neuron 2003;37:925-937.
21.
Tampellini D, Capetillo-Zarate E, Dumont M, Huang Z, Yu F, Lin MT, Gouras GK: Effects of synaptic modulation on β-amyloid, synaptophysin, and memory performance in Alzheimer's disease transgenic mice. J Neurosci 2010;30:14299-14304.
22.
Bero AW, Yan P, Roh JE, Cirrito JR, Stewart FR, Raichle ME, Lee JM, Holtzman DM: Neuronal activity regulates the regional vulnerability to amyloid-beta deposition. Nature 2011;14:750-758.
23.
Siegel GJ, Agranoff BS, Albers RW, Fisher SK, Uhler MD: Basic Neurochemistry, ed 6. Philadelphia, Lippincott-Raven, 1999, pp 191-400.
24.
Squire L, Berg D, Bloom F, du Lac S, Ghosh A, Spitzer N: Fundamental Neuroscience, ed 3. Amsterdam, Elsevier, 2008, pp 41-271.
25.
Wegrzyn JL, Bark SJ, Funkelstein L, Mosier CA, Yap A, Kazemi-Esfarjani P, la Spada AR, Sigurdson C, O'Connor DT, Hook V: Proteomics of dense core secretory vesicles reveal distinct protein categories for secretion of neuroeffectors for cell-cell communication. J Proteome Res 2010;9:5002-5024.
26.
Gupta N, Bark SJ, Lu WD, Taupenot L, O'Connor DT, Pevzner P, Hook V: Mass spectrometry-based neuropeptidomics of secretory vesicles from human adrenal medullary pheochromocytoma reveals novel peptide products of prohormone processing. J Proteome Res 2010;9:5065-5075.
27.
Smith AD, Winkler H: A simple method for the isolation of adrenal chromaffin granules on a large scale. Biochem J 1967;103:480-482.
28.
Bark SJ, Wegrzyn J, Taupenot L, Ziegler M, O'Connor DT, Ma Q, Smoot M, Ideker T, Hook V: The protein architecture of human secretory vesicles reveals differential regulation of signaling molecule secretion by protein kinases. PLoS One 2012;7:e41134.
29.
Hook VH, Eiden LE: Two peptidases that convert 125I-Lys-Arg(Met)enkephalin and 125I-(Met)enkephalin-Arg6, respectively, to 125I-(Met)enkephalin in bovine adrenal medullary chromaffin granules. FEBS Lett 1984;172:212-218.
30.
Schilling S, Hoffmann T, Wermann M, Heiser U, Wasternack C, Demuth HU: Continuous spectrometric assays for glutaminyl cyclase activity. Anal Biochem 2002;303:49-56.
31.
Schilling S, Cynis H, von Bohlen A, Hoffmann T, Wermann M, Heiser U, Buchholz M, Zunkel K, Demuth HU: Isolation, catalytic properties, and competitive inhibitors of the zinc-dependent murine glutaminyl cyclase. Biochemistry 2005;44:13415-13424.
32.
Stephan A, Wermann M, von Bohlen A, Koch B, Cynis H, Demuth HU, Schilling S: Mammalian glutaminyl cyclases and their isoenzymes have identical enzymatic characteristics. FEBS J 2009;276:6522-6536.
33.
Funkelstein L, Lu WD, Koch B, Mosier C, Toneff T, Taupenot L, O'Connor DT, Reinheckel T, Peters C, Hook V: Human cathepsin V protease participates in production of enkephalin and NPY neuropeptide neurotransmitters. J Biol Chem 2012;287:15232-15241.
34.
Minokadeh A, Funkelstein L, Toneff T, Hwang SR, Beinfeld M, Reinheckel T, Peters C, Zadina J, Hook V: Cathepsin L participates in dynorphin production in brain cortex, illustrated by protease gene knockout and expression. Mol Cell Neurosci 2010;43:98-107.
35.
Yasothornsrikul S, Greenbaum D, Medzihradszky KF, Toneff T, Bundey R, Miller R, Schilling B, Petermann I, Dehnert J, Logvinova A, Goldsmith P, Neveu JM, Lane WS, Gibson B, Reinheckel T, Peters C, Bogyo M, Hook V: Cathepsin L in secretory vesicles functions as a prohormone-processing enzyme for production of the enkephalin peptide neurotransmitter. Proc Natl Acad Sci USA 2003;100:9590-9595.
36.
Ziegler MG, Kennedy B, Elayan H: A sensitive radioenzymatic assay for epinephrine forming enzymes. Life Sci 1988;43:2117-2122.
37.
Vaingankar SM, Li Y, Biswas N, Gayen J, Choksi S, Rao F, Ziegler MG, Mahata SK, O'Connor DT: Effects of chromogranin A deficiency and excess in vivo: biphasic blood pressure and catecholamine responses. J Hypertens 2010;28:817-825.
38.
O'Connor DT, Mahata SK, Mahata M, Jiang Q, Hook VY, Taupenot L: Primary culture of bovine chromaffin cells. Nat Protoc 2007;2:1248-1253.
39.
Funkelstein L, Toneff T, Mosier C, Hwang SR, Beuschlein F, Lichtenauer UD, Reinheckel T, Peters C, Hook V: Major role of cathepsin L for producing the peptide hormones ACTH, β-endorphin, and α-MSH, illustrated by protease gene knockout and expression. J Biol Chem 2008;283:35652-35659.
40.
Hwang SR, Garza C, Mosier C, Toneff T, Wunderlich E, Goldsmith P, Hook V: Cathepsin L expression is directed to secretory vesicles for enkephalin neuropeptide biosynthesis and secretion. J Biol Chem 2007;282:9556-9563.
41.
Mahata SK, Mahata M, Wen G, Wong WB, Mahapatra NR, Hamilton BA, O'Connor DT: The catecholamine release-inhibitory ‘catestatin' fragment of chromogranin A: naturally occurring human variants with different potencies for multiple chromaffin cell nicotinic cholinergic responses. Mol Pharmacol 2004;66:1180-1191.
42.
Sala F, Nistri A, Criado M: Nicotinic acetylcholine receptors of adrenal chromaffin cells. Acta Physiol 2008;192:203-212.
43.
Cirrito JR, Yamada KA, Finn MB, Sloviter RS, Bales KR, May PC, Schoepp DD, Paul SM, Mennerick S, Holtzman DM: Synaptic activity regulates interstitial fluid amyloid-beta levels in vivo. Neuron 2005;48:913-922.
44.
Das U, Scott DA, Ganguly A, Koo EH, Tang Y, Roy S: Activity-induced convergence of APP and BACE-1 in acidic microdomains via an endocytosis-dependent pathway. Neuron 2013;79:447-460.
45.
Kim SH, Fraser PE, Westaway D, St George-Hyslop PH, Ehrlich ME, Gandy S: Group II metabotropic glutamate receptor stimulation triggers production and release of Alzheimer's amyloid β42 from isolated intact nerve terminals. J Neurosci 2010;30:3870-3875.
46.
Lundblad M, Decressac M, Mattsson B, Björklund A: Impaired neurotransmission caused by overexpression of α-synuclein in nigral dopamine neurons. Proc Natl Acad Sci USA 2012;109:3213-3219.
47.
Yang L, Zhao L, Gan Z, He Z, Xu J, Gao X, Wang X, Han W, Chen L, Xu T, Li W, Liu Y: Deficiency in RNA editing enzyme ADAR2 impairs regulated exocytosis. FASEB J 2010;24:3720-3732.
48.
Hwang SR, Steineckert B, Yasothornsrikul S, Sei CA, Toneff T, Rattan J, Hook VY: Molecular cloning of endopin 1, a novel serpin localized to neurosecretory vesicles of chromaffin cells: inhibition of basic residue-cleaving proteases by endopin 1. J Biol Chem 1999;274:34164-34173.
49.
Taylor CV, Taupenot L, Mahata SK, Mahata M, Wu H, Yasothornsrikul S, Toneff T, Caporale C, Jiang Q, Parmer RJ, Hook VY, O'Connor DT: Formation of the catecholamine release-inhibitory peptide catestatin from chromogranin A: determination of proteolytic cleavage sites in hormone storage granules. J Biol Chem 2000;275:22905-22915.
50.
Todd RD, McDavid SM, Brindley RL, Jewell ML, Currie KP: Gabapentin inhibits catecholamine release from adrenal chromaffin cells. Anesthesiology 2012;116:1013-1024.
51.
Cynis H, Hoffmann T, Friedrich D, Kehlen A, Gans K, Kleinschmidt M, Rahfeld JU, Wolf R, Wermann M, Stephan A, Haegele M, Sedlmeier R, Graubner S, Jagla W, Müller A, Eichentopf R, Heiser U, Seifert F, Quax PH, de Vries MR, Hesse I, Trautwein D, Wollert U, Berg S, Freyse EJ, Schilling S, Demuth HU: The isoenzyme of glutaminyl cyclase is an important regulator of monocyte infiltration under inflammatory conditions. EMBO Mol Med 2011;3:545-558.
52.
Vassilacopoulou D, Ripellino JA, Tezapsidis N, Hook VYH, Robakis NK: Full-length and truncated Alzheimer amyloid precursors in chromaffin granules: solubilization of membrane amyloid precursor is mediated by an enzymatic mechanism. J Neurochem 1995;64:2140-2146.
53.
Tezapsidis N, Li HC, Ripellino JA, Efthimiopoulos S, Vassilacopoulou D, Sambamurti K, Toneff T, Yasothornsrikul S, Hook VYH, Robakis NK: Release of nontransmembrane full-length Alzheimer's amyloid precursor protein from the lumenar surface of chromaffin granule membranes. Biochemistry 1998;37:1274-1282.
54.
Crews L, Masliah E: Molecular mechanisms of neurodegeneration in Alzheimer's disease. Hum Mol Genet 2010;19:R12-R20.
55.
Huang Y, Mucke L: Alzheimer mechanisms and therapeutic strategies. Cell 2012;16:1204-1222.
56.
Vassar R, Kovacs DM, Uan R, Wong PC: The β-secretase enzyme BACE in health and Alzheimer's disease: regulation, cell biology, function, and therapeutic potential. J Neurosci 2009;29:12787-12794.
57.
Kandelepas PC, Vassar R: Identification and biology of β-secretase. J Neurochem 2012;1:55-61.
58.
Toneff T, Funkelstein L, Mosier C, Ziegler M, Hook V: β-Amyloid peptides undergo regulated secretion with peptide and catecholamine neurotransmitters from dense core secretory vesicles. Peptides 2013;46:125-135.
59.
Hook V, Toneff T, Bogyo M, Greenbaum D, Medzihradszky KF, Neveu J, Lane W, Hook G, Reisine T: Inhibition of cathepsin B reduces β-amyloid production in regulated secretory vesicles of neuronal chromaffin cells: evidence for cathepsin B as a candidate β-secretase of Alzheimer's disease. Biol Chem 2005;386:931-940.
60.
Hook VY, Kindy M, Hook G: Inhibitors of cathepsin B improve memory and reduce β-amyloid in transgenic Alzheimer disease mice expressing the wild-type, but not the Swedish mutant, β-secretase site of the amyloid precursor protein. J Biol Chem 2008;283:7745-7753.
61.
Kindy M, Yu J, Zhu H, El-Amouri SS, Hook V, Hook GR: Deletion of the cathepsin B gene improves memory deficits in a transgenic Alzheimer's disease mouse model expressing APP containing the wild-type β-secretase site sequence. J Alzheimers Dis 2012;29:827-840.
62.
Efthimiopoulos S, Floor E, Georgakopoulos A, Shioi J, Cui W, Yasothornsrikul S, Hook VY, Wisniewski T, Buee L, Robakis NK: Enrichment of presenilin 1 peptides in neuronal large dense-core and somatodendritic clathrin-coated vesicles. J Neurochem 1998;71:2365-2372.
63.
Kimberly WT, LaVoie MJ, Ostaszewski BL, Ye W, Wolfe MS, Selkoe DJ: γ-Secretase is a membrane protein complex comprised of presenilin, nicastrin, Aph-1, and Pen-2. Proc Natl Acad Sci USA 2003;100:6382-6387.
64.
Lee SF, Shah S, Li H, Yu C, Han W, Yu G: Mammalian APH-1 interacts with presenilin and nicastrin and is required for intramembrane proteolysis of amyloid-β precursor protein and Notch. J Biol Chem 2002;277:45013-45019.
65.
Portelius E, Bogdanovic N, Gustavsson MK, Volkmann I, Brinkmalm G, Zetterberg H, Winblad B, Blennow K: Mass spectrometric characterization of brain amyloid beta isoform signatures in familial and sporadic Alzheimer's disease. Acta Neuropathol 2010;120:185-193.
66.
Nutu M, Bourgeois P, Zetterberg H, Portelius E, Andreasson U, Parent S, Lipari F, Hall S, Constantinescu R, Hansson O, Blennow K: Aβ1-15/16 as a potential diagnostic marker in neurodegenerative diseases. Neuromolecular Med 2013;15:169-179.
67.
Portelius E, Brinkmalm G, Tran A, Andreasson U, Zetterberg H, Westman-Brinkmalm A, Blennow K, Ohrfelt A: Identification of novel N-terminal fragments of amyloid precursor protein in cerebrospinal fluid. Exp Neurol 2010;223:351-358.
68.
Leissring MA: The AβCs of Aβ-cleaving proteases. J Biol Chem 2008;283:29645-29659.
69.
Ermolieff J, Loy JA, Koelsch G, Tang J: Proteolytic activation of recombinant pro-memapsin 2 (Pro-β-secretase) studied with new fluorogenic substrates. Biochemistry 2000;39:16263.
70.
Lin X, Koelsch G, Wu S, Downs D, Dashti A, Tang J: Human aspartic protease memapsin 2 cleaves the β-secretase site of β-amyloid precursor protein. Proc Natl Acad Sci USA 2000;97:1456-1460.
71.
Vassar R, Bennett BD, Babu-Khan S, Kahn S, Mendiaz EA, Denis P, Teplow DB, Ross S, Amarante P, Loeloff R, Luo Y, Fisher S, Fuller J, Edenson S, Lile J, Jarosinski MA, Biere AL, Curran E, Burgess T, Louis JC, Collins F, Treanor J, Rogers G, Citron M: β-Secretase cleavage of Alzheimer's amyloid precursor protein by the transmembrane aspartic protease BACE. Science 1999;286:735-741.
72.
Quintero-Monzon O, Martin MM, Fernandez MA, Cappello CA, Krzysiak AJ, Osenkowski P, Wolfe MS: Dissociation between the processivity and total activity of γ-secretase: implications for the mechanism of Alzheimer's disease-causing presenilin mutations. Biochemistry 2011;50:9023-9035.
73.
Li YM, Lai MT, Xu M, Huang Q, DiMuzio-Mower J, Sardana MK, Shi XP, Yin KC, Shafer JA, Gardell SJ: Presenilin 1 is linked with γ-secretase activity in the detergent solubilized state. Proc Natl Acad Sci USA 2000;97:6138-6143.
74.
Fraering PC, Ye W, Strub JM, Dolios G, LaVoie MJ, Ostaszewski BL, van Dorsselaer A, Wang R, Selkoe DJ, Wolfe MS: Purification and characterization of the human γ-secretase complex. Biochemistry 2004;43:9774-9789.
75.
Hook V, Funkelstein L, Lu D, Bark S, Wegrzyn J, Hwang SR: Proteases for processing proneuropeptides into peptide neurotransmitters and hormones. Annu Rev Pharmacol Toxicol 2008;48:393-423.
76.
Loh YP, Tam WW, Russell JT: Measurement of ΔpH and membrane potential in secretory vesicles isolated from bovine pituitary intermediate lobe. J Biol Chem 1984;259:8238-8245.
77.
Pollard HB, Shindo H, Creutz CE, Pazoles CJ, Cohen JS: Internal pH and state of ATP in adrenergic chromaffin granules determined by 31P nuclear magnetic resonance spectroscopy. J Biol Chem 1979;254:1170-1177.
78.
Parmer RJ, Mahata M, Mahata S, Sebald MT, O'Connor DT, Miles LA: Tissue plasminogen activator (t-PA) is targeted to the regulated secretory pathway: catecholamine storage vesicles as a reservoir for the rapid release of t-PA. J Biol Chem 1997;272:1976-1982.
79.
Bark SJ, Wegrzyn J, Taupenot L, Ziegler M, O'Connor D, Ma Q, Smoot M, Ideker T, Hook V: The protein architecture of human secretory vesicles reveals differential regulation of signaling molecule secretion by protein kinases. PloS One 2012;7:e41134.
80.
Cox ME, Parsons SJ: Roles for protein kinase C and mitogen-activated protein kinase in nicotine-induced secretion from bovine adrenal chromaffin cells. J Neurochem 1997;69:1119-1130.
81.
Vitale N, Mukai H, Rouot B, Thiersé D, Aunis D, Bader MF: Exocytosis in chromaffin cells: possible involvement of the heterotrimeric GTP-binding protein Go. J Biol Chem 1993;268:14715-14723.
82.
Simon JP, Bader MF, Aunis D: Effect of secretagogues on chromogranin A synthesis in bovine cultured chromaffin cells: possible regulation by protein kinase C. Biochem J 1989;260:915-922.
83.
Bommer M, Herz A: Neuropeptides and other secretagogues in bovine chromaffin cells: their effect on opioid peptide metabolism. Neuropeptides 1989;13:243-251.
84.
Piccini A, Russo C, Gliozzi A, Relini A, Vitali A, Borghi R, Giliberto L, Armirotti A, D'Arrigo C, Markesbery W, Gambetti P, Tabaton M: β-Amyloid is different in normal aging and in Alzheimer disease. J Biol Chem 2005;280:34186-34192.
85.
Ginsberg SD, Mufson EJ, Counts SE, Wuu J, Alldred MJ, Nixon RA, Che S: Regional selectivity of rab5 and rab7 protein upregulation in mild cognitive impairment and Alzheimer's disease. J Alzheimers Dis 2010;22:631-639.
86.
Grbovic OM, Mathews PM, Jiang Y, Schmidt SD, Dinakar R, Summers-Terio NB, Ceresa BP, Nixon RA, Cataldo AM: Rab5-stimulated up-regulation of the endocytic pathway increases intracellular β-cleaved amyloid precursor protein carboxyl-terminal fragment levels and Aβ production. J Biol Chem 2003;278:31261-31268.
87.
Jiang Y, Mullaney KA, Peterhoff CM, Che S, Schmidt SD, Boyer-Boiteau A, Ginsberg SD, Cataldo AM, Mathews PM, Nixon RA: Alzheimer's-related endosome dysfunction in Down syndrome is Aβ-independent but requires APP and is reversed by BACE-1 inhibition. Proc Natl Acad Sci USA 2010;107:1630-1635.
88.
Koo EH, Squazzo SL: Evidence that production and release of amyloid β-protein involves the endocytic pathway. J Biol Chem 1994;269:17386-17389.
89.
Lee J, Retamal C, Cuitiño L, Caruano-Yzermans A, Shin JE, van Kerkhof P, Marzolo MP, Bu G: Adaptor protein sorting nexin 17 regulates amyloid precursor protein trafficking and processing in the early endosomes. J Biol Chem 2008;283:11501-11508.
90.
Lee S, Sato Y, Nixon RA: Lysosomal proteolysis inhibition selectively disrupts axonal transport of degradative organelles and causes an Alzheimer's-like axonal dystrophy. J Neurosci 2011;31:7817-7830.
91.
Lee JH, Yu WH, Kumar A, Lee S, Mohan PS, Peterhoff CM, Wolfe DM, Martinez-Vicente M, Massey AC, Sovak G, Uchiyama Y, Westaway D, Cuervo AM, Nixon RA: Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations. Cell 2010;141:1146-1158.
92.
Mathews PM, Guerra CB, Jiang Y, Grbovic OM, Kao BH, Schmidt SD, Dinakar R, Mercken M, Hille-Rehfeld A, Rohrer J, Mehta P, Cataldo AM, Nixon RA: Alzheimer's disease-related overexpression of the cation-dependent mannose 6-phosphate receptor increases Aβ secretion: role for altered lysosomal hydrolase distribution in β-amyloidogenesis. J Biol Chem 2002;277:5299-5307.
93.
Nixon RA: The role of autophagy in neurodegenerative disease. Nat Med 2013;19:983-997.
94.
Nixon RA, Yang DS: Autophagy failure in Alzheimer's disease: locating the primary defect. Neurobiol Dis 2011;43:38-45.
95.
Yang DS, Stavrides P, Mohan PS, Kaushik S, Kumar A, Ohno M, Schmidt SD, Wesson D, Bandyopadhyay U, Jiang Y, Pawlik M, Peterhoff CM, Yang AJ, Wilson DA, St George-Hyslop P, Westaway D, Mathews PM, Levy E, Cuervo AM, Nixon RA: Reversal of autophagy dysfunction in the TgCRND8 mouse model of Alzheimer's disease ameliorates amyloid pathologies and memory deficits. Brain 2011;134:258-277.
96.
Perez-Gonzalez R, Gauthier SA, Kumar A, Levy E: The exosome secretory pathway transports amyloid precursor protein carboxyl-terminal fragments from the cell into the brain extracellular space. J Biol Chem 2012;287:43108-43115.
97.
Rajendran L, Honsho M, Zahn TR, Keller P, Geiger KD, Verkade P, Simons K: Alzheimer's disease β-amyloid peptides are released in association with exosomes. Proc Natl Acad Sci USA 2006;103:11172-11177.
98.
Wirths O, Erck C, Martens H, Harmeier A, Geumann C, Jawhar S, Kumar S, Multhaup G, Walter J, Ingelsson M, Degerman-Gunnarsson M, Kalimo H, Huitinga I, Lannfelt L, Bayer TA: Identification of low molecular weight pyroglutamate Aβ oligomers in Alzheimer disease: a novel tool for therapy and diagnosis. J Biol Chem 2010;285:41517-41524.
99.
Schlenzig D, Manhart S, Cinar Y, Kleinschmidt M, Hause G, Willbold D, Funke SA, Schilling S, Demuth HU: Pyroglutamate formation influences solubility and amyloidogenicity of amyloid peptides. Biochemistry 2009;48:7072-7078.
100.
Alexandru A, Jagla W, Graubner S, Becker A, Bäuscher C, Kohlmann S, Sedlmeier R, Raber KA, Cynis H, Rönicke R, Reymann KG, Petrasch-Parwez E, Hartlage-Rübsamen M, Waniek A, Rossner S, Schilling S, Osmand AP, Demuth HU, von Hörsten S: Selective hippocampal neurodegeneration in transgenic mice expressing small amounts of truncated Aβ is induced by pyroglutamate-Aβ formation. J Neurosci 2011;31:12790-12801.
101.
Fischer WH, Spiess J: Identification of a mammalian glutaminyl cyclase converting glutaminyl into pyroglutamyl peptides. Proc Natl Acad Sci 1987;84:3628-3632.
102.
Booth RE, Misquitta SA, Bateman RC Jr: Human pituitary glutaminyl cyclase: expression in insect cells and dye affinity purification. Protein Expr Purif 2003;32:141-146.
103.
Matsuoka Y, Saito M, LaFrancois J, Saito M, Gaynor K, Olm V, Wang L, Casey E, Lu Y, Shiratori C, Lemere C, Duff K: Novel therapeutic approach for the treatment of Alzheimer's disease by peripheral administration of agents with an affinity to β-amyloid. J Neurosci 2003;23:29-33.
104.
Roberson ED, Scearce-Levie K, Palop JJ, Yan F, Cheng IH, Wu T, Gerstein H, Yu GQ, Mucke L: Reducing endogenous tau ameliorates amyloid β-induced deficits in an Alzheimer's disease mouse model. Science 2007;316:750-754.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.