Background: Deficient peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) function is one component of mitochondrial dysfunction in neurodegenerative diseases. Current molecular classification of such diseases is based on the predominant protein accumulating as intra- or extracellular aggregates. Experimental evidence suggests that mitochondrial dysfunction and impaired protein processing are closely interrelated. In vitro findings further indicate that PGC-1α dysfunction may contribute to protein misfolding in neurodegeneration. Objective: To systematically evaluate the neuropathological alterations of mice lacking the expression of the full-length PGC-1α protein (FL-PGC-1α) but expressing an N-truncated fragment. Methods: To assess the pattern of neurodegeneration-related proteins, we performed immunostaining for Tau, pTau, α-synuclein, amyloid-β, amyloid precursor protein, prion protein, FUS, TDP-43 and ubiquitin. Using hematoxylin and eosin, Klüver-Barrera and Bielschowsky silver stainings and anti-GFAP immunohistochemistry, we performed an anatomical mapping to provide a lesion profile. Results: The immunohistochemical pattern of neurodegeneration-related proteins did not differ between FL-PGC-1α knockout and wild-type animals, and there was a complete lack of protein deposits or ubiquitin-positive inclusions. The analysis of neuropathological alterations revealed widespread vacuolation predominating in the cerebral white matter, caudate-putamen, thalamus and brainstem, and reactive astrogliosis in the brainstem and cerebellar nuclei. This morphological phenotype was thus reminiscent of human mitochondrial encephalopathies, especially the Kearns-Sayre syndrome. Conclusion: We conclude that the lack of FL-PGC-1α per se is insufficient to recapitulate major features of neurodegenerative diseases, but evokes a pathology seen in mitochondrial encephalopathies, which makes PGC-1α-deficient mice a valuable model for this yet incurable group of diseases.

1.
Beal MF: Mitochondria take center stage in aging and neurodegeneration. Ann Neurol 2005;58:495-505.
2.
Finsterer J, Harbo HF, Baets J, Van Broeckhoven C, Di Donato S, Fontaine B, De Jonghe P, Lossos A, Lynch T, Mariotti C, Schols L, Spinazzola A, Szolnoki Z, Tabrizi SJ, Tallaksen CM, Zeviani M, Burgunder JM, Gasser T: EFNS guidelines on the molecular diagnosis of mitochondrial disorders. Eur J Neurol 2009;16:1255-1264.
3.
Kovacs GG, Botond G, Budka H: Protein coding of neurodegenerative dementias: the neuropathological basis of biomarker diagnostics. Acta Neuropathol 2010;119:389-408.
4.
Rubinsztein DC: The roles of intracellular protein-degradation pathways in neurodegeneration. Nature 2006;443:780-786.
5.
Cappelletti G, Surrey T, Maci R: The parkinsonism producing neurotoxin MPP+ affects microtubule dynamics by acting as a destabilising factor. FEBS Lett 2005;579:4781-4786.
6.
Ren Y, Liu W, Jiang H, Jiang Q, Feng J: Selective vulnerability of dopaminergic neurons to microtubule depolymerization. J Biol Chem 2005;280:34105-34112.
7.
Hoglinger GU, Carrard G, Michel PP, Medja F, Lombes A, Ruberg M, Friguet B, Hirsch EC: Dysfunction of mitochondrial complex I and the proteasome: interactions between two biochemical deficits in a cellular model of Parkinson's disease. J Neurochem 2003;86:1297-1307.
8.
Kowall NW, Hantraye P, Brouillet E, Beal MF, McKee AC, Ferrante RJ: MPTP induces alpha-synuclein aggregation in the substantia nigra of baboons. Neuroreport 2000;11:211-213.
9.
Gibrat C, Saint-Pierre M, Bousquet M, Levesque D, Rouillard C, Cicchetti F: Differences between subacute and chronic MPTP mice models: investigation of dopaminergic neuronal degeneration and alpha-synuclein inclusions. J Neurochem 2009;109:1469-1482.
10.
Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT: Chronic systemic pesticide exposure reproduces features of Parkinson's disease. Nat Neurosci 2000;3:1301-1306.
11.
Sherer TB, Kim JH, Betarbet R, Greenamyre JT: Subcutaneous rotenone exposure causes highly selective dopaminergic degeneration and alpha-synuclein aggregation. Exp Neurol 2003;179:9-16.
12.
Liang H, Ward WF: PGC-1alpha: a key regulator of energy metabolism. Adv Physiol Educ 2006;30:145-151.
13.
Scarpulla RC: Transcriptional paradigms in mammalian mitochondrial biogenesis and function. Physiol Rev 2008;88:611-638.
14.
Rona-Voros K, Weydt P: The role of PGC-1alpha in the pathogenesis of neurodegenerative disorders. Curr Drug Targets 2010;11:1262-1269.
15.
Chaturvedi RK, Adhihetty P, Shukla S, Hennessy T, Calingasan N, Yang L, Starkov A, Kiaei M, Cannella M, Sassone J, Ciammola A, Squitieri F, Beal MF: Impaired PGC-1alpha function in muscle in Huntington's disease. Hum Mol Genet 2009;18:3048-3065.
16.
Zheng B, Liao Z, Locascio JJ, Lesniak KA, Roderick SS, Watt ML, Eklund AC, Zhang-James Y, Kim PD, Hauser MA, Grunblatt E, Moran LB, Mandel SA, Riederer P, Miller RM, Federoff HJ, Wullner U, Papapetropoulos S, Youdim MB, Cantuti-Castelvetri I, Young AB, Vance JM, Davis RL, Hedreen JC, Adler CH, Beach TG, Graeber MB, Middleton FA, Rochet JC, Scherzer CR: PGC-1alpha, a potential therapeutic target for early intervention in Parkinson's disease. Sci Transl Med 2010;2:52ra73.
17.
Qin W, Haroutunian V, Katsel P, Cardozo CP, Ho L, Buxbaum JD, Pasinetti GM: PGC-1alpha expression decreases in the Alzheimer disease brain as a function of dementia. Arch Neurol 2009;66:352-361.
18.
St-Pierre J, Drori S, Uldry M, Silvaggi JM, Rhee J, Jager S, Handschin C, Zheng K, Lin J, Yang W, Simon DK, Bachoo R, Spiegelman BM: Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell 2006;127:397-408.
19.
Ebrahim AS, Ko LW, Yen SH: Reduced expression of peroxisome-proliferator activated receptor gamma coactivator-1alpha enhances alpha-synuclein oligomerization and down regulates AKT/GSK3beta signaling pathway in human neuronal cells that inducibly express alpha-synuclein. Neurosci Lett 2010;473:120-125.
20.
Zhang Y, Huypens P, Adamson AW, Chang JS, Henagan TM, Boudreau A, Lenard NR, Burk D, Klein J, Perwitz N, Shin J, Fasshauer M, Kralli A, Gettys TW: Alternative mRNA splicing produces a novel biologically active short isoform of PGC-1alpha. J Biol Chem 2009;284:32813-32826.
21.
Chang JS, Fernand V, Zhang Y, Shin J, Jun HJ, Joshi Y, Gettys TW: NT-PGC-1alpha protein is sufficient to link beta3-adrenergic receptor activation to transcriptional and physiological components of adaptive thermogenesis. J Biol Chem 2012;287:9100-9111.
22.
Leone TC, Lehman JJ, Finck BN, Schaeffer PJ, Wende AR, Boudina S, Courtois M, Wozniak DF, Sambandam N, Bernal-Mizrachi C, Chen Z, Holloszy JO, Medeiros DM, Schmidt RE, Saffitz JE, Abel ED, Semenkovich CF, Kelly DP: PGC-1alpha deficiency causes multi-system energy metabolic derangements: muscle dysfunction, abnormal weight control and hepatic steatosis. PLoS Biol 2005;3:e101.
23.
Lin J, Wu PH, Tarr PT, Lindenberg KS, St-Pierre J, Zhang CY, Mootha VK, Jager S, Vianna CR, Reznick RM, Cui L, Manieri M, Donovan MX, Wu Z, Cooper MP, Fan MC, Rohas LM, Zavacki AM, Cinti S, Shulman GI, Lowell BB, Krainc D, Spiegelman BM: Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1alpha null mice. Cell 2004;119:121-135.
24.
Cui L, Jeong H, Borovecki F, Parkhurst CN, Tanese N, Krainc D: Transcriptional repression of PGC-1alpha by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration. Cell 2006;127:59-69.
25.
Weydt P, Pineda VV, Torrence AE, Libby RT, Satterfield TF, Lazarowski ER, Gilbert ML, Morton GJ, Bammler TK, Strand AD, Cui L, Beyer RP, Easley CN, Smith AC, Krainc D, Luquet S, Sweet IR, Schwartz MW, La Spada AR: Thermoregulatory and metabolic defects in Huntington's disease transgenic mice implicate PGC-1alpha in Huntington's disease neurodegeneration. Cell Metab 2006;4:349-362.
26.
Weydt P, Soyal SM, Gellera C, Didonato S, Weidinger C, Oberkofler H, Landwehrmeyer GB, Patsch W: The gene coding for PGC-1alpha modifies age at onset in Huntington's Disease. Mol Neurodegener 2009;4:3.
27.
Taherzadeh-Fard E, Saft C, Andrich J, Wieczorek S, Arning L: PGC-1alpha as modifier of onset age in Huntington disease. Mol Neurodegener 2009;4:10.
28.
Okamoto S, Pouladi MA, Talantova M, Yao D, Xia P, Ehrnhoefer DE, Zaidi R, Clemente A, Kaul M, Graham RK, Zhang D, Vincent Chen HS, Tong G, Hayden MR, Lipton SA: Balance between synaptic versus extrasynaptic NMDA receptor activity influences inclusions and neurotoxicity of mutant huntingtin. Nat Med 2009;15:1407-1413.
29.
Johri A, Starkov AA, Chandra A, Hennessey T, Sharma A, Orobello S, Squitieri F, Yang L, Beal MF: Truncated peroxisome proliferator-activated receptor-gamma coactivator 1alpha splice variant is severely altered in Huntington's disease. Neurodegener Dis 2011;8:496-503.
30.
Clark J, Reddy S, Zheng K, Betensky RA, Simon DK: Association of PGC-1alpha polymorphisms with age of onset and risk of Parkinson's disease. BMC Med Genet 2011;12:69.
31.
Shin JH, Ko HS, Kang H, Lee Y, Lee YI, Pletinkova O, Troconso JC, Dawson VL, Dawson TM: PARIS (ZNF746) repression of PGC-1alpha contributes to neurodegeneration in Parkinson's disease. Cell 2011;144:689-702.
32.
Soontornniyomkij V, Risbrough VB, Young JW, Soontornniyomkij B, Jeste DV, Achim CL: Increased hippocampal accumulation of autophagosomes predicts short-term recognition memory impairment in aged mice. Age (Dordr) 2012;34:305-316.
33.
Ma D, Li S, Lucas EK, Cowell RM, Lin JD: Neuronal inactivation of peroxisome proliferator-activated receptor gamma coactivator 1alpha (PGC-1alpha) protects mice from diet-induced obesity and leads to degenerative lesions. J Biol Chem 2010;285:39087-39095.
34.
Rudolph D, Tafuri A, Gass P, Hammerling GJ, Arnold B, Schutz G: Impaired fetal T cell development and perinatal lethality in mice lacking the cAMP response element binding protein. Proc Natl Acad Sci USA 1998;95:4481-4486.
35.
Alaynick WA, Kondo RP, Xie W, He W, Dufour CR, Downes M, Jonker JW, Giles W, Naviaux RK, Giguere V, Evans RM: ERRgamma directs and maintains the transition to oxidative metabolism in the postnatal heart. Cell Metab 2007;6:13-24.
36.
Huo L, Scarpulla RC: Mitochondrial DNA instability and peri-implantation lethality associated with targeted disruption of nuclear respiratory factor 1 in mice. Mol Cell Biol 2001;21:644-654.
37.
Ristevski S, O'Leary DA, Thornell AP, Owen MJ, Kola I, Hertzog PJ: The ETS transcription factor GABPalpha is essential for early embryogenesis. Mol Cell Biol 2004;24:5844-5849.
38.
Larsson NG, Wang J, Wilhelmsson H, Oldfors A, Rustin P, Lewandoski M, Barsh GS, Clayton DA: Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice. Nat Genet 1998;18:231-236.
39.
Hance N, Ekstrand MI, Trifunovic A: Mitochondrial DNA polymerase gamma is essential for mammalian embryogenesis. Hum Mol Genet 2005;14:1775-1783.
40.
Davies VJ, Hollins AJ, Piechota MJ, Yip W, Davies JR, White KE, Nicols PP, Boulton ME, Votruba M: Opa1 deficiency in a mouse model of autosomal dominant optic atrophy impairs mitochondrial morphology, optic nerve structure and visual function. Hum Mol Genet 2007;16:1307-1318.
41.
Yang H, Brosel S, Acin-Perez R, Slavkovich V, Nishino I, Khan R, Goldberg IJ, Graziano J, Manfredi G, Schon EA: Analysis of mouse models of cytochrome c oxidase deficiency owing to mutations in Sco2. Hum Mol Genet 2010;19:170-180.
42.
Lee J, Schriner SE, Wallace DC: Adenine nucleotide translocator 1 deficiency increases resistance of mouse brain and neurons to excitotoxic insults. Biochim Biophys Acta 2009;1787:364-370.
43.
Zhao X, Strong R, Zhang J, Sun G, Tsien JZ, Cui Z, Grotta JC, Aronowski J: Neuronal PPARgamma deficiency increases susceptibility to brain damage after cerebral ischemia. J Neurosci 2009;29:6186-6195.
44.
Luo J, Sladek R, Carrier J, Bader JA, Richard D, Giguere V: Reduced fat mass in mice lacking orphan nuclear receptor estrogen-related receptor alpha. Mol Cell Biol 2003;23:7947-7956.
45.
Dell'agnello C, Leo S, Agostino A, Szabadkai G, Tiveron C, Zulian A, Prelle A, Roubertoux P, Rizzuto R, Zeviani M: Increased longevity and refractoriness to Ca(2+)-dependent neurodegeneration in Surf1 knockout mice. Hum Mol Genet 2007;16:431-444.
46.
Tyynismaa H, Mjosund KP, Wanrooij S, Lappalainen I, Ylikallio E, Jalanko A, Spelbrink JN, Paetau A, Suomalainen A: Mutant mitochondrial helicase Twinkle causes multiple mtDNA deletions and a late-onset mitochondrial disease in mice. Proc Natl Acad Sci U S A 2005;102:17687-17692.
47.
Tanaka D, Nakada K, Takao K, Ogasawara E, Kasahara A, Sato A, Yonekawa H, Miyakawa T, Hayashi J: Normal mitochondrial respiratory function is essential for spatial remote memory in mice. Mol Brain 2008;1:21.
48.
El Ghouzzi V, Csaba Z, Olivier P, Lelouvier B, Schwendimann L, Dournaud P, Verney C, Rustin P, Gressens P: Apoptosis-inducing factor deficiency induces early mitochondrial degeneration in brain followed by progressive multifocal neuropathology. J Neuropathol Exp Neurol 2007;66:838-847.
49.
Bouaita A, Augustin S, Lechauve C, Cwerman-Thibault H, Benit P, Simonutti M, Paques M, Rustin P, Sahel JA, Corral-Debrinski M: Downregulation of apoptosis-inducing factor in Harlequin mice induces progressive and severe optic atrophy which is durably prevented by AAV2-AIF1 gene therapy. Brain 2011;135:35-52.
50.
Melov S, Schneider JA, Day BJ, Hinerfeld D, Coskun P, Mirra SS, Crapo JD, Wallace DC: A novel neurological phenotype in mice lacking mitochondrial manganese superoxide dismutase. Nat Genet 1998;18:159-163.
51.
Lopez LC, Akman HO, Garcia-Cazorla A, Dorado B, Marti R, Nishino I, Tadesse S, Pizzorno G, Shungu D, Bonilla E, Tanji K, Hirano M: Unbalanced deoxynucleotide pools cause mitochondrial DNA instability in thymidine phosphorylase-deficient mice. Hum Mol Genet 2009;18:714-722.
52.
Quintana A, Kruse SE, Kapur RP, Sanz E, Palmiter RD: Complex I deficiency due to loss of Ndufs4 in the brain results in progressive encephalopathy resembling Leigh syndrome. Proc Natl Acad Sci U S A 2010;107:10996-11001.
53.
Oldfors A, Fyhr IM, Holme E, Larsson NG, Tulinius M: Neuropathology in Kearns-Sayre syndrome. Acta Neuropathol 1990;80:541-546.
54.
Lin J, Puigserver P, Donovan J, Tarr P, Spiegelman BM: Peroxisome proliferator-activated receptor gamma coactivator 1beta (PGC-1beta ), a novel PGC-1-related transcription coactivator associated with host cell factor. J Biol Chem 2002;277:1645-1648.
55.
Andersson U, Scarpulla RC: Pgc-1-related coactivator, a novel, serum-inducible coactivator of nuclear respiratory factor 1-dependent transcription in mammalian cells. Mol Cell Biol 2001;21:3738-3749.
56.
Srivastava S, Diaz F, Iommarini L, Aure K, Lombes A, Moraes CT: PGC-1alpha/beta induced expression partially compensates for respiratory chain defects in cells from patients with mitochondrial disorders. Hum Mol Genet 2009;18:1805-1812.
57.
Wenz T: PGC-1alpha activation as a therapeutic approach in mitochondrial disease. IUBMB Life 2009;61:1051-1062.
58.
Brown GK, Squier MV: Neuropathology and pathogenesis of mitochondrial diseases. J Inherit Metab Dis 1996;19:553-572.
59.
Tanji K, Kunimatsu T, Vu TH, Bonilla E: Neuropathological features of mitochondrial disorders. Semin Cell Dev Biol 2001;12:429-439.
60.
Betts J, Lightowlers RN, Turnbull DM: Neuropathological aspects of mitochondrial DNA disease. Neurochem Res 2004;29:505-511.
61.
Filosto M, Tomelleri G, Tonin P, Scarpelli M, Vattemi G, Rizzuto N, Padovani A, Simonati A: Neuropathology of mitochondrial diseases. Biosci Rep 2007;27:23-30.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.