The N-methyl-D-aspartate subtype of ionotropic glutamate receptors (NMDARs) signals both prosurvival and death-inducing (excitotoxic) neuronal responses via synaptically (synaptic NMDAR) and extrasynaptically (extrasynaptic NMDAR) located receptor pools, respectively. Both receptor pools share similar, though not identical, postreceptor signaling molecules. The activation of the extrasynaptic NMDAR pathway is predominant. Therefore, in order to inhibit the extrasynaptic death pathway while sparing synaptic responses, it is critical to identify selective postreceptor effectors of extrasynaptic NMDARs. The present study addressed these issues by using primary cultures of rat hippocampal neurons and a pharmacological protocol of selective NMDAR stimulation for Western blot and immunocytochemistry analyses. We found that the activation of extrasynaptic NMDARs, either alone or together with synaptic NMDARs, triggers cyclin-D1-associated re-entry into the cell cycle, which does not proceed beyond the S-phase. This aberrant cell cycle re-entry is particularly associated with neuronal death triggered specifically via extrasynaptic NMDAR-induced c-Jun N-terminal protein kinase (JNK). In addition, NMDA-elicited neuronal death was significantly inhibited by pharmacological blockade of JNK-mediated cyclin D1 expression or by silencing cyclin D1 RNA. Taken together, these data suggest a causal relationship between cyclin D1 induction and extrasynaptic NMDAR-triggered neuronal death along the excitotoxic NMDA pathway. Therefore, cyclin D1 may be a putative target for the development of neuroprotective strategies sparing physiological synaptic NMDAR signaling.

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.