Heterozygous mutations in the glucocerebrosidase gene (GBA1) are associated with increased risk for α-synuclein aggregation disorders (‘synucleinopathies’), which include Parkinson’s disease (PD) and dementia with Lewy bodies (DLB). Homozygous GBA1 mutations lead to reduced GBA1 lysosomal activity underlying three variants of Gaucher disease (GD). Despite the wealth of clinical and genetic evidence supporting the association between mutant genotypes and synucleinopathy risk, the precise mechanisms by which GBA1 mutations lead to PD and DLB remain unclear. Here, we summarize recent findings that highlight the complexity of this pathogenetic link. In neural cells, both gain and loss of function mechanisms, as conferred by mutant GBA1 expression and activity loss, respectively, seem to promote aberrant α-synuclein processing. In addition, we draw attention to recent insights gleaned from GD animal models regarding axonal pathology, brain inflammation and memory dysfunction. From a translational perspective, we discuss the concepts of neural enzyme replacement therapy and pharmacological agents as potential treatment strategies for GBA1-associated synucleinopathies. Finally, we touch on the issue whether aberrant α-synuclein species may coregulate GBA1 activity in the vertebrate brain, thereby providing a reverse link, i.e., between an important synucleinopathy risk factor and the enzyme’s lysosomal function. In summary, several leads connecting GBA1 mutations with α-synuclein misprocessing have emerged as potential targets for the treatment of GBA1- related synucleinopathies, and possibly, for non-GBA1- associated neurodegenerative diseases.

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.