Introduction: Congenital heart disease (CHD) comprises a wide spectrum of structural defects. However, the etiology of a large proportion of CHDs remains undefined. Among the genetic causes, 22q11.2 deletion syndrome is the condition which most stands out. This association is related to many cardiac embryonic development genes being in the chromosome 22 region, as well as being a region with a high probability of errors in gene recombination, influencing normal levels of gene expression and affecting a gene’s copy number. Objective: This study aimed to compare molecular findings using multiplex ligation-dependent probe amplification assay in patients presenting CHD with a previous fluorescence in situ hybridization (FISH) diagnosis of 22q11.2DS versus patients without known genetic disorder. Results: All patients had CHD and facial dysmorphia. Patients who had been previously diagnosed by FISH were found to have the exact same deletion size, low-copy-number repeat sequences and genes involved. GATA4 when deleted or duplicated in different exons (1 and 6) showed distinct congenital heart defect phenotypes. Patients who did not have their diagnosis defined by FISH showed different molecular results, ranging from normal findings to alterations in the GATA and NXK2 genes. Conclusion: Molecular diversity in cardiac malformations is a reality and a great challenge since genotype-phenotype correlation is hindered. Therefore, new insights on that matter should be considered: 22q11.2 deletion syndrome should only be linked to the chromosome 22 region or is there a phenotype variability to be looked at that involves a broader genomic environment?

1.
McDonald-McGinn
DM
,
Sullivan
KE
,
Marino
B
,
Philip
N
,
Swillen
A
,
Vorstman
JAS
, et al
.
22q11.2 deletion syndrome
.
Nat Rev Dis Primers
.
2015
;
1
:
15071
.
2.
Goldmuntz
E
.
22q11.2 deletion syndrome and congenital heart disease
.
Am J Med Genet C Semin Med Genet
.
2020
;
184
(
1
):
64
72
.
3.
Tennant
PW
,
Pearce
MS
,
Bythell
M
,
Rankin
J
.
20-year survival of children born with congenital anomalies: a population-based study
.
Lancet
.
2010
;
375
(
9715
):
649
56
.
4.
Redon
R
,
Ishikawa
S
,
Fitch
KR
,
Feuk
L
,
Perry
GH
,
Andrews
TD
, et al
.
Global variation in copy number in the human genome
.
Nature
.
2006
;
444
(
7118
):
444
54
.
5.
Liu
Z
,
Wang
J
,
Liu
S
,
Deng
Y
,
Liu
H
,
Li
N
, et al
.
Copy number variation of GATA4 and NKX2-5 in Chinese fetuses with congenital heart disease
.
Pediatr Int
.
2015
;
57
(
2
):
234
8
.
6.
Kinnunen
S
,
Välimäki
M
,
Tölli
M
,
Wohlfahrt
G
,
Darwich
R
,
Komati
H
, et al
.
Nuclear receptor-like structure and interaction of congenital heart disease-associated factors GATA4 and NKX2-5
.
PLoS One
.
2015
;
10
(
12
):
e0144145
.
7.
Blue
GM
,
Kirk
EP
,
Sholler
GF
,
Harvey
RP
,
Winlaw
DS
.
Congenital heart disease: current knowledge about causes and inheritance
.
Med J Aust
.
2012
;
197
(
3
):
155
9
.
8.
Zaidi
S
,
Brueckner
M
.
Genetics and genomics of congenital heart disease
.
Circ Res
.
2017
;
120
(
6
):
923
40
.
9.
Athanasiadis
DI
,
Mylonas
KS
,
Kasparian
K
,
Ziogas
IA
,
Vlachopoulou
D
,
Sfyridis
PG
, et al
.
Surgical outcomes in syndromic tetralogy of Fallot: a systematic review and evidence quality assessment
.
Pediatr Cardiol
.
2019
;
40
(
6
):
1105
12
.
10.
Takao
A
,
Ando
M
,
Cho
K
,
Kinouchi
A
,
Murakami
Y
.
Etiology and morphogenesis of congenital heart disease
.
Futura pub Co
;
1980
; p.
253
69
.
11.
Mutlu
ET
,
Aykan
HH
,
Karagöz
T
.
Analysis of gene copy number variations in patients with congenital heart disease using multiplex ligation-dependent probe amplification
.
Anatol J Cardiol
.
2018
;
20
(
1
):
9
15
.
12.
Chen
CP
,
Huang
JP
,
Chen
YY
,
Chern
SR
,
Wu
PS
,
Su
JW
, et al
.
Chromosome 22q11.2 deletion syndrome: prenatal diagnosis, array comparative genomic hybridization characterization using uncultured amniocytes and literature review
.
Gene
.
2013
;
527
(
1
):
405
9
.
13.
Schouten
JP
,
McElgunn
CJ
,
Waaijer
R
,
Zwijnenburg
D
,
Diepvens
F
,
Pals
G
.
Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification
.
Nucleic Acids Res
.
2002
;
30
(
12
):
e57
.
14.
Diniz
BL
,
Deconte
D
,
Gadelha
KA
,
Glaeser
AB
,
Guaraná
BB
,
de Moura
, et al
.
Congenital heart defects and 22q11.2 deletion syndrome: a 20-year update and new insights to aid clinical diagnosis
.
J Pediatr Genet
.
2023
;
12
(
2
):
113
22
.
15.
Bajolle
F
,
Zaffran
S
,
Bonnet
D
.
Genetics and embryological mechanisms of congenital heart diseases
.
Arch Cardiovasc Dis
.
2009
;
102
:
59
63
.
16.
Diniz
BL
,
Santos
AS
,
Glaeser
AB
,
Guaraná
BB
,
Lorea
CF
,
Josahkian
JA
, et al
.
Congenital heart defects and dysmorphic facial features in patients suspicious of 22q11.2 deletion syndrome in southern Brazil
.
J Pediatr Genet
.
2020
;
9
(
4
):
227
34
.
17.
Botto
LD
,
May
K
,
Fernhoff
PM
,
Correa
A
,
Coleman
K
,
Rasmussen
SA
, et al
.
A population-based study of the 22q11.2 deletion: phenotype, incidence, and contribution to major birth defects in the population
.
Pediatrics
.
2003
;
112
(
1 Pt 1
):
101
7
.
18.
Szczawińska-Popłonyk
A
,
Schwartzmann
E
,
Chmara
Z
,
Głukowska
A
,
Krysa
T
,
Majchrzycki
M
, et al
.
Chromosome 22q11.2 deletion syndrome: a comprehensive review of molecular genetics in the context of multidisciplinary clinical approach
.
Int J Mol Sci
.
2023
;
24
(
9
):
8317
.
19.
Nogueira
SI
,
Hacker
AM
,
Bellucco
FT
,
Christofolini
DM
,
Kulikowski
LD
,
Cernach
MCSP
, et al
.
Atypical 22q11.2 deletion in a patient with DGS/VCFS spectrum
.
Eur J Med Genet
.
2008
;
51
(
3
):
226
30
.
20.
Gavril
E-C
,
Popescu
R
,
Nucă
I
,
Ciobanu
C-G
,
Butnariu
LI
,
Rusu
C
, et al
.
Different types of deletions created by low-copy repeats sequences location in 22q11.2 deletion syndrome: genotype–phenotype correlation
.
Genes
.
2022
;
13
(
11
):
2083
.
21.
Gunjan
A
,
Paik
J
,
Verreault
A
.
Regulation of histone synthesis and nucleosome assembly
.
Biochimie
.
2005
;
87
(
7
):
625
35
.
22.
Zhao
Y
,
Diacou
A
,
Johnston
HR
,
Musfee
FI
,
McDonald-McGinn
DM
,
McGinn
D
, et al
.
Complete sequence of the 22q11.2 allele in 1,053 subjects with 22q11.2 deletion syndrome reveals modifiers of conotruncal heart defects
.
Am J Hum Genet
.
2020
;
106
(
1
):
26
40
.
23.
Morrow
BE
,
McDonald-McGinn
DM
,
Emanuel
BS
,
Vermeesch
JR
,
Scambler
PJ
.
Molecular genetics of 22q11.2 deletion syndrome
.
Am J Med Genet A
.
2018
;
176
(
10
):
2070
81
.
24.
Motahari
Z
,
Moody
SA
,
Maynard
TM
,
LaMantia
AS
.
In the line-up: deleted genes associated with DiGeorge/22q11. 2 deletion syndrome: are they all suspects
.
J Neurodev Disord
.
2019
;
11
(
1
):
7
.
25.
Jeanne
M
,
Vuillaume
ML
,
Ung
DC
,
Vancollie
VE
,
Wagner
C
,
Collins
SC
, et al
.
Haploinsufficiency of the HIRA gene located in the 22q11 deletion syndrome region is associated with abnormal neurodevelopment and impaired dendritic outgrowth
.
Hum Genet
.
2021
;
140
(
6
):
885
96
.
26.
Dilg
D
,
Saleh
RN
,
Phelps
SE
,
Rose
Y
,
Dupays
L
,
Murphy
C
, et al
.
HIRA is required for heart development and directly regulates Tnni2 and Tnnt3
.
PLoS One
.
2016
;
11
(
8
):
e0161096
.
27.
Burnside
RD
.
22q11.21 deletion syndromes: a review of proximal, central, and distal deletions and their associated features
.
Cytogenet Genome Res
.
2015
;
146
(
2
):
89
99
.
28.
McDonald-McGinn
DM
,
Sullivan
KE
.
Chromosome 22q11.2 deletion syndrome (DiGeorge syndrome/velocardiofacial syndrome)
.
Medicine
.
2011
;
90
(
1
):
1
18
.
29.
Glessner
JT
,
Bick
AG
,
Ito
K
,
Homsy
J
,
Rodriguez-Murillo
L
,
Fromer
M
, et al
.
Increased frequency of de novo copy number variants in congenital heart disease by integrative analysis of single nucleotide polymorphism array and exome sequence data
.
Circ Res
.
2014
;
115
(
10
):
884
96
.
30.
Bellucco
FT
,
Belangero
SI
,
Farah
LM
,
Machado
MV
,
Cruz
AP
,
Lopes
LM
, et al
.
Investigating 22q11.2 deletion and other chromosomal aberrations in fetuses with heart defects detected by prenatal echocardiography
.
Pediatr Cardiol
.
2010
;
31
(
8
):
1146
50
.
31.
Nappi
F
.
In-depth genomic analysis: the new challenge in congenital heart disease
.
Int J Mol Sci
.
2024
;
25
(
3
):
1734
.
32.
Deciphering Developmental Disorders Study
.
Prevalence and architecture of de novo mutations in developmental disorders
.
Nature
.
2017
;
542
(
7642
):
433
8
.
33.
Paige
SL
,
Plonowska
K
,
Xu
A
,
Wu
SM
.
Molecular regulation of cardiomyocyte differentiation
.
Circ Res
.
2015
;
116
(
2
):
341
53
.
34.
Granados-Riveron
JT
,
Pope
M
,
Bu’lock
FA
,
Thornborough
C
,
Eason
J
,
Setchfield
K
, et al
.
Combined mutation screening of NKX2-5, GATA4, and TBX5 in congenital heart disease: multiple heterozygosity and novel mutations
.
Congenit Heart Dis
.
2012
;
7
(
2
):
151
9
.
35.
Moldovan
E
,
Bănescu
C
,
Cucerea
M
,
Moldovan
V
,
Gozar
L
,
Puşcaşiu
L
.
GATA4 rs61277615, rs73203482, and rs35813172 in newborns with transposition of the great arteries
.
Acta Med Okayama
.
2023
;
77
:
365
70
.
36.
Patient
RK
,
McGhee
JD
.
The GATA family (vertebrates and invertebrates)
.
Curr Opin Genet Dev
.
2002
;
12
(
4
):
416
22
.
37.
Shaker
O
,
Omran
S
,
Sharaf
E
,
A Hegazy
G
,
Mashaly
M
,
E A Gaboon
N
.
A novel mutation in exon 1 of GATA4 in Egyptian patients with congenital heart disease
.
Turk J Med Sci
.
2017
;
47
(
1
):
217
21
.
38.
Wang
J
,
Fang
M
,
Liu
XY
,
Xin
YF
,
Liu
ZM
,
Chen
X
, et al
.
A novel GATA4 mutation responsible for congenital ventricular septal defects
.
Int J Mol Med
.
2011
;
28
(
4
):
557
64
.
39.
Tomita-Mitchell
A
,
Maslen
CL
,
Morris
CD
,
Garg
V
,
Goldmuntz
E
.
GATA4 sequence variants in patients with congenital heart disease
.
J Med Genet
.
2007
;
44
(
12
):
779
83
.
40.
Hussein
I
,
El-Rubi
M
,
Helmy
N
,
Hussein
H
,
El-Gerzawy
A
,
Bassyouni
R
, et al
.
Genetic studies of congenital heart defects in Egyptian patients
.
Res J Med Med Sci
.
2009
;
4
:
55
66
.
41.
Floriani
MA
,
Glaeser
AB
,
Dorfman
LE
,
Agnes
G
,
Rosa
RFM
,
Zen
PRG
.
GATA 4 deletions associated with congenital heart diseases in south Brazil
.
J Pediatr Genet
.
2021
;
10
(
2
):
92
7
.
42.
Li
J
,
Liu
WD
,
Yang
ZL
,
Yuan
F
,
Xu
L
,
Li
RG
, et al
.
Prevalence and spectrum of GATA4 mutations associated with sporadic dilated cardiomyopathy
.
Gene
.
2014
;
548
(
2
):
174
81
.
43.
McCulley
DJ
,
Black
BL
.
Transcription factor pathways and congenital heart disease
.
Curr Top Dev Biol
.
2012
;
100
:
253
77
.
44.
Lints
TJ
,
Parsons
LM
,
Hartley
L
,
Lyons
I
,
Harvey
RP
.
Nkx-2.5: a novel murine homeobox gene expressed in early heart progenitor cells and their myogenic descendants
.
Development
.
1993
;
119
(
2
):
419
31
. Erratum in: Development. 1993 Nov;119(3):969.
45.
Goldmuntz
E
,
Geiger
E
,
Benson
DW
.
NKX2.5 mutations in patients with tetralogy of Fallot
.
Circulation
.
2001
;
104
(
21
):
2565
8
.
46.
Rauch
R
,
Hofbeck
M
,
Zweier
C
,
Koch
A
,
Zink
S
,
Trautmann
U
, et al
.
Comprehensive genotype-phenotype analysis in 230 patients with tetralogy of Fallot
.
J Med Genet
.
2010
;
47
(
5
):
321
31
.
47.
Chung
IM
,
Rajakumar
G
.
Genetics of congenital heart defects: the NKX2-5 gene, a key player
.
Genes
.
2016
;
7
(
2
):
6
.
48.
Benson
DW
,
Silberbach
GM
,
Kavanaugh-McHugh
A
,
Cottrill
C
,
Zhang
Y
,
Riggs
S
, et al
.
Mutations in the cardiac transcription factor NKX2.5 affect diverse cardiac developmental pathways
.
J Clin Investig
.
1999
;
104
(
11
):
1567
73
.
You do not currently have access to this content.