Introduction: Prior research on the genotype and allele variations of immunometabolism genes and their correlations with the risk of myeloproliferative neoplasms (MPNs) and chronic myeloid leukemia (CML) is inconsistent. Aim: This study aimed to assess the correlations between mutations in specific immunometabolism genes with the risk and progression of MPN and CML in Saudi patients. Methods: This case-control study included 244 Saudi patients, 122 patients with MPNs and CMLs, and 122 healthy controls. Immunometabolism genes, including BCL3 (rs2927488 G>A), MDM4 (rs11801299 G>A), KLF14 (rs972283 G>A), and miR-146a (rs2910164 C>G), were identified via tetra amplification-refractory mutation system PCR. Results: In comparison to healthy persons, MPN and CML patients exhibited a higher prevalence of genotype and allele variants in immunometabolism genes, BCL3 rs2927488 G>A (0.027), MDM4 rs11801299 G>A (0.028), KLF14 rs972283 G>A (0.0004), and miR-146a rs2910164 G>C (0.004).Discussion and Conclusion: The prevailing inheritance model suggested that mutations in all four immunometabolism genes were significantly correlated with an elevated chance of developing MPNs, with increases of 1.84-, 2-, 4.28-, and 2.75-fold for BCL3, MDM4, KLF14, and miR-146a, respectively, in comparison to healthy controls. In addition, we assessed the effect of gene polymorphisms on the course of the disease, and rapid disease progression was found to be correlated with the presence of these polymorphisms. These findings could help determine the risk of developing MPNs and patient prognosis.

1.
Vainchenker
W
,
Delhommeau
F
,
Constantinescu
SN
,
Bernard
OA
.
New mutations and pathogenesis of myeloproliferative neoplasms
.
Blood
.
2011
;
118
(
7
):
1723
35
.
2.
Tefferi
A
,
Thiele
J
,
Vardiman
JW
.
The 2008 World Health Organization classification system for myeloproliferative neoplasms: order out of chaos
.
Cancer
.
2009
;
115
(
17
):
3842
7
.
3.
Delhommeau
F
,
Pisani
DF
,
James
C
,
Casadevall
N
,
Constantinescu
S
,
Vainchenker
W
.
Oncogenic mechanisms in myeloproliferative disorders
.
Cell Mol Life Sci
.
2006
;
63
(
24
):
2939
53
.
4.
Campbell
PJ
,
Green
AR
,
Path
FRC
.
Mechanisms of disease the myeloproliferative disorders
.
2006
.
5.
Nolan
GP
,
Fujita
T
,
Bhatia
K
,
Huppi
C
,
Liou
HC
,
Scott
ML
, et al
.
The BCL-3 proto-oncogene encodes a nuclear I kappa B-like molecule that preferentially interacts with NF-kappa B p50 and p52 in a phosphorylation-dependent manner
.
Mol Cell Biol
.
1993
;
13
(
6
):
3557
66
.
6.
Mitchell
JP
,
Carmody
RJ
.
NF-κB and the transcriptional control of inflammation
.
Int Rev Cell Mol Biol
.
2018
;
335
:
41
84
.
7.
Annemann
M
,
Plaza-Sirvent
C
,
Schuster
M
,
Katsoulis-Dimitriou
K
,
Kliche
S
,
Schraven
B
, et al
.
Atypical IκB proteins in immune cell differentiation and function
.
Immunol Lett
.
2016
;
171
:
26
35
.
8.
Liu
H
,
Zeng
L
,
Yang
Y
,
Guo
C
,
Wang
H
.
BCL-3: a double-edged sword in immune cells and inflammation
.
Front Immunol
.
2022
;
13
:
847699
.
9.
McKeithan
TW
,
Ohno
H
,
Diaz
MO
.
Identification of a transcriptional unit adjacent to the breakpoint in the 14;19 translocation of chronic lymphocytic leukemia
.
Genes Chromosomes Cancer
.
1990
;
1
(
3
):
247
55
.
10.
Szymanowska
N
,
Klapper
W
,
Gesk
S
,
Küppers
R
,
Martín-Subero
JI
,
Siebert
R
.
BCL2 and BCL3 are recurrent translocation partners of the IGH locus
.
Cancer Genet Cytogenet
.
2008
;
186
(
2
):
110
4
.
11.
Niu
Y
,
Yang
X
,
Chen
Y
,
Zhang
L
,
Jin
X
,
Tang
Y
, et al
.
BCL3 expression is a potential prognostic and predictive biomarker in acute myeloid leukemia of FAB subtype M2
.
Pathol Oncol Res
.
2019
;
25
(
2
):
541
8
.
12.
Fransen
K
,
Visschedijk
MC
,
van Sommeren
S
,
Fu
JY
,
Franke
L
,
Festen
EAM
, et al
.
Analysis of SNPs with an effect on gene expression identifies UBE2L3 and BCL3 as potential new risk genes for Crohn's disease
.
Hum Mol Genet
.
2010
;
19
(
17
):
3482
8
.
13.
Nag
S
,
Qin
J
,
Srivenugopal
KS
,
Wang
M
,
Zhang
R
.
The MDM2-p53 pathway revisited
.
J Biomed Res
.
2013
;
27
(
4
):
254
71
.
14.
Tan
BX
,
Liew
HP
,
Chua
JS
,
Ghadessy
FJ
,
Tan
YS
,
Lane
DP
, et al
.
Anatomy of MDM2 and MDM4 in evolution
.
J Mol Cell Biol
.
2017
;
9
(
1
):
3
15
.
15.
Haupt
S
,
Mejía-Hernández
JO
,
Vijayakumaran
R
,
Keam
SP
,
Haupt
Y
.
The long and the short of it: the MDM4 tail so far
.
J Mol Cell Biol
.
2019
;
11
(
3
):
231
44
.
16.
Gupta
A
,
Shah
K
,
Oza
MJ
,
Behl
T
.
Reactivation of p53 gene by MDM2 inhibitors: a novel therapy for cancer treatment
.
Biomed Pharmacother
.
2019
;
109
:
484
92
.
17.
Li
H
,
Chen
X
,
Wu
M
,
Song
P
,
Zhao
X
.
Bicyclic stapled peptides based on p53 as dual inhibitors for the interactions of p53 with MDM2 and MDMX
.
Chin Chem Lett
.
2022
;
33
(
3
):
1254
8
.
18.
Liu
L
,
Fan
L
,
Fang
C
,
Zou
ZJ
,
Yang
S
,
Zhang
LN
, et al
.
S-MDM4 mRNA overexpression indicates a poor prognosis and marks a potential therapeutic target in chronic lymphocytic leukemia
.
Cancer Sci
.
2012
;
103
(
12
):
2056
63
.
19.
Li
L
,
Tan
Y
,
Chen
X
,
Xu
Z
,
Yang
S
,
Ren
F
, et al
.
MDM4 overexpressed in acute myeloid leukemia patients with complex karyotype and wild-type TP53
.
PLoS One
.
2014
;
9
(
11
):
e113088
.
20.
Liang
M
,
Han
X
,
Vadhan-Raj
S
,
Nguyen
M
,
Zhang
YH
,
Fernandez
M
, et al
.
HDM4 is overexpressed in mantle cell lymphoma and its inhibition induces p21 expression and apoptosis
.
Mod Pathol
.
2010
;
23
(
3
):
381
91
.
21.
Leventaki
V
,
Rodic
V
,
Tripp
SR
,
Bayerl
MG
,
Perkins
SL
,
Barnette
P
, et al
.
TP53 pathway analysis in paediatric Burkitt lymphoma reveals increased MDM4 expression as the only TP53 pathway abnormality detected in a subset of cases
.
Br J Haematol
.
2012
;
158
(
6
):
763
71
.
22.
Fan
G
,
Sun
L
,
Shan
P
,
Zhang
X
,
Huan
J
,
Zhang
X
, et al
.
Loss of KLF14 triggers centrosome amplification and tumorigenesis
.
Nat Commun
.
2015
;
6
:
8450
.
23.
Wu
G
,
Yuan
S
,
Chen
Z
,
Chen
G
,
Fan
Q
,
Dong
H
, et al
.
The KLF14 transcription factor regulates glycolysis by downregulating LDHB in colorectal cancer
.
Int J Biol Sci
.
2019
;
15
(
3
):
628
35
.
24.
Buniello
A
,
MacArthur
JAL
,
Cerezo
M
,
Harris
LW
,
Hayhurst
J
,
Malangone
C
, et al
.
The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019
.
Nucleic Acids Res
.
2019
;
47
(
D1
):
D1005
12
.
25.
So
AYL
,
Zhao
JL
,
Baltimore
D
.
The Yin and Yang of microRNAs: leukemia and immunity
.
Immunol Rev
.
2013
;
253
(
1
):
129
45
.
26.
Tavakoli
F
,
Jaseb
K
,
Far
MAJ
,
Soleimani
M
,
Khodadi
E
,
Saki
N
.
Evaluation of microRNA-146a expression in acute lymphoblastic leukemia
.
Front Biol
.
2016
;
11
(
1
):
53
8
.
27.
Liu
X
.
Association between miR146a (rs2910164) G> C polymorphism and susceptibility to acute lymphoblastic leuke-mia in children
.
Chin J Appl Clin Pediatr
.
2018
:
200
2
.
28.
Tan
W
,
Liao
Y
,
Qiu
Y
,
Liu
H
,
Tan
D
,
Wu
T
, et al
.
miRNA 146a promotes chemotherapy resistance in lung cancer cells by targeting DNA damage inducible transcript 3 (CHOP)
.
Cancer Lett
.
2018
;
428
:
55
68
.
29.
McKeithan
TW
,
Takimoto
GS
,
Ohno
H
,
Bjorling
VS
,
Morgan
R
,
Hecht
BK
, et al
.
BCL3 rearrangements and t(14;19) in chronic lymphocytic leukemia and other B-cell malignancies: a molecular and cytogenetic study
.
Genes Chromosomes Cancer
.
1997
;
20
(
1
):
64
72
.
30.
Tu
K
,
Liu
Z
,
Yao
B
,
Xue
Y
,
Xu
M
,
Dou
C
, et al
.
BCL-3 promotes the tumor growth of hepatocellular carcinoma by regulating cell proliferation and the cell cycle through cyclin D1
.
Oncol Rep
.
2016
;
35
(
4
):
2382
90
.
31.
Maureira
V
.
Influencia del polimorfismo genético rs2927488 de Bcl3 en el síndrome de intestino irritable
.
Latinoamérica
.
2015
;
2
:
3
.
32.
Yano
T
,
Sander
CA
,
Andrade
RE
,
Gauwerky
CE
,
Croce
CM
,
Longo
DL
, et al
.
Molecular analysis of the BCL-3 locus at chromosome 17q22 in B-cell neoplasms
.
Blood
.
1993
;
82
(
6
):
1813
9
.
33.
Wade
M
,
Li
YC
,
Wahl
GM
.
MDM2, MDMX and p53 in oncogenesis and cancer therapy
.
Nat Rev Cancer
.
2013
;
13
(
2
):
83
96
.
34.
Karni-Schmidt
O
,
Lokshin
M
,
Prives
C
.
The roles of MDM2 and MDMX in cancer
.
Annu Rev Pathol
.
2016
;
11
:
617
44
.
35.
Yu
F
,
Jiang
Z
,
Song
A
.
Association of rs11801299 and rs1380576 polymorphisms at MDM4 with risk, clinicopathological features and prognosis in patients with retinoblastoma
.
Cancer Epidemiol
.
2019
;
58
:
153
9
.
36.
Jin
X
,
Zhao
W
,
Zheng
M
,
Zhou
P
,
Niu
T
.
The role of MDM4 SNP34091 A>C polymorphism in cancer: a meta-analysis on 19,328 patients and 51,058 controls
.
Int J Biol Markers
.
2017
;
32
(
1
):
e62
7
.
37.
Song
CG
,
Fu
F
,
Wu
X
,
Wang
C
,
Shao
Z
.
Correlation of polymorphism rs1563828 in MDM4 gene with breast cancer risk and onset age
.
Zhonghua Wai Ke Za Zhi
.
2012
;
50
(
1
):
53
6
.
38.
Wang
MY
,
Jia
M
,
He
J
,
Zhou
F
,
Qiu
LX
,
Sun
MH
, et al
.
MDM4 genetic variants and risk of gastric cancer in an Eastern Chinese population
.
Oncotarget
.
2017
;
8
(
12
):
19547
55
.
39.
Gao
F
,
Xiong
X
,
Pan
W
,
Yang
X
,
Zhou
C
,
Yuan
Q
, et al
.
A regulatory MDM4 genetic variant locating in the binding sequence of multiple MicroRNAs contributes to susceptibility of small cell lung cancer
.
PLoS One
.
2015
;
10
(
8
):
e0135647
.
40.
Tripon
F
,
Iancu
M
,
Trifa
A
,
Crauciuc
GA
,
Boglis
A
,
Balla
B
, et al
.
Association analysis of TP53 rs1042522, MDM2 rs2279744, rs3730485, MDM4 rs4245739 variants and acute myeloid leukemia susceptibility, risk stratification scores, and clinical features: an exploratory study
.
J Clin Med
.
2020
;
9
(
6
):
1672
.
41.
Zhu
Y
,
Wang
H
,
Thuraisamy
A
.
MDM2/P53 inhibitors as sensitizing agents for cancer chemotherapy
. In:
Chen
ZS
,
Yang
DH
, editors.
Protein kinase inhibitors as sensitizing agents for chemotherapy
.
Cambridge, MA
:
Elsevier
;
2019
. p.
243
66
.
42.
Small
KS
,
Todorčević
M
,
Civelek
M
,
El-Sayed Moustafa
JS
,
Wang
X
,
Simon
MM
, et al
.
Regulatory variants at KLF14 influence type 2 diabetes risk via a female-specific effect on adipocyte size and body composition
.
Nat Genet
.
2018
;
50
(
4
):
572
80
.
43.
Chen
XZ
,
He
WX
,
Luo
RG
,
Xia
GJ
,
Zhong
JX
,
Chen
QJ
, et al
.
KLF14/miR-1283/TFAP2C axis inhibits HER2-positive breast cancer progression via declining tumor cell proliferation
.
Mol Carcinog
.
2023
;
62
(
4
):
532
45
.
44.
Li
Z
,
Yao
H
,
Wang
S
,
Li
G
,
Gu
X
.
CircTADA2A suppresses the progression of colorectal cancer via miR-374a-3p/KLF14 axis
.
J Exp Clin Cancer Res
.
2020
;
39
(
1
):
160
.
45.
Akash
MSH
,
Rasheed
S
,
Rehman
K
,
Ibrahim
M
,
Imran
M
,
Assiri
MA
.
Biochemical activation and regulatory functions of trans-regulatory KLF14 and its association with genetic polymorphisms
.
Metabolites
.
2023
;
13
(
2
):
199
.
46.
Tetreault
MP
,
Yang
Y
,
Katz
JP
.
Krüppel-like factors in cancer
.
Nat Rev Cancer
.
2013
;
13
(
10
):
701
13
.
47.
Hua
Z
,
Chun
W
,
Fang-Yuan
C
.
MicroRNA-146a and hemopoietic disorders
.
Int J Hematol
.
2011
;
94
(
3
):
224
9
.
48.
Hasani
SS
,
Hashemi
M
,
Eskandari-Nasab
E
,
Naderi
M
,
Omrani
M
,
Sheybani-Nasab
M
.
A functional polymorphism in the miR-146a gene is associated with the risk of childhood acute lymphoblastic leukemia: a preliminary report
.
Tumour Biol
.
2014
;
35
(
1
):
219
25
.
49.
Ramkaran
P
,
Khan
S
,
Phulukdaree
A
,
Moodley
D
,
Chuturgoon
AA
.
miR-146a polymorphism influences levels of miR-146a, IRAK-1, and TRAF-6 in young patients with coronary artery disease
.
Cell Biochem Biophys
.
2014
;
68
(
2
):
259
66
.
You do not currently have access to this content.