Introduction: Inherited glycosylphosphatidylinositol biosynthesis defect is considered a subset of the congenital glycosylation disorder that results from mutations in the genes encoding proteins participating in glycosylphosphatidylinositol biosynthesis and modification. Glycosylphosphatidylinositol anchor proteins play important roles in numerous cellular processes including neurogenesis, cell adhesion, immune response, and signaling. Hyperphosphatasia with mental retardation syndrome-3 is one of the glycosylphosphatidylinositol anchor defects, characterized by moderate to severe intellectual disability, dysmorphic features, hypotonia, seizures, and persistent hyperphosphatasia. The aims of this study were to investigate the clinical implications of the PGAP2 gene and identify the severe phenotype. Case Presentation: A male patient with dysmorphic features, neurodevelopmental delay, seizures, hearing loss, Hirschsprung disease, central fever, and elevated alkaline phosphatase was included in the study. The magnetic resonance imaging showed cerebral atrophy and corpus callosum hypoplasia. The whole-exome sequencing analysis of the individual and Sanger sequencing were performed for segregation. Additionally, next-generation sequencing, whole transcriptome sequencing, and homology modeling and analysis were performed. Whole-exome sequencing revealed a homozygous c.651C>G (p.His217Gln) in the PGAP2 gene. The Sanger sequencing confirmed the parents were heterozygous. There is no splicing variant detected by whole transcriptome sequencing. The AlphaFold model was interpreted hypothetically. It observed the substitution of histidine, with glutamine, and may affect the stability of protein. Discussion: Homozygous PGAP2 mutations in the patient we reported in our study resulted in a severe clinical picture including severe developmental delay and intellectual disability, severe epilepsy, dysmorphic features, central fever, biochemical, hormonal, and immunological abnormalities. This patient would be the youngest case published in the literature. We showed that the instability of mutant PGAP2 protein that causes hyperphosphatasia with mental retardation syndrome-3 leads to more severe phenotypes.

1.
Wu
T
,
Yin
F
,
Guang
S
,
He
F
,
Yang
L
,
Peng
J
.
The Glycosylphosphatidylinositol biosynthesis pathway in human diseases
.
Orphanet J Rare Dis
.
2020
;
15
(
1
):
129
.
2.
Bellai-Dussault
K
,
Nguyen
TTM
,
Baratang
NV
,
Jimenez-Cruz
DA
,
Campeau
PM
.
Clinical variability in inherited glycosylphosphatidylinositol deficiency disorders
.
Clin Genet
.
2019
;
95
(
1
):
112
21
.
3.
Mabry
CC
,
Bautista
A
,
Kirk
RF
,
Dubilier
LD
,
Braunstein
H
,
Koepke
JA
.
Familial hyperphosphatase with mental retardation, seizures, and neurologic deficits
.
J Pediatr
.
1970
;
77
(
1
):
74
85
.
4.
Manea
E
.
A step closer in defining glycosylphosphatidylinositol anchored proteins role in health and glycosylation disorders
.
Mol Genet Metab Rep
.
2018
;
16
:
67
75
.
5.
Holtz
AM
,
Harrington
AW
,
McNamara
ER
,
Kielian
A
,
Soul
JS
,
Martinez-Ojeda
M
, et al
.
Expanding the phenotypic spectrum of Mabry Syndrome with novel PIGO gene variants associated with hyperphosphatasia, intractable epilepsy, and complex gastrointestinal and urogenital malformations
.
Eur J Med Genet
.
2020
;
63
(
4
):
103802
.
6.
Tezcan
İ
,
Berkel
,
Ersoy
F
,
Sanal
Ö
.
Sağlıklı Türk çocukları ve erişkinlerde turbidometrik yöntemle bakılan serum immunoglobulin düzeyleri
.
Çocuk Sağlığı ve Hastalıkları Dergisi
.
1996
;
32
:
649
56
.
7.
Comans-Bitter
WM
,
de Groot
R
,
van den Beemd
R
,
Neijens
HJ
,
Hop
WC
,
Groeneveld
K
, et al
.
Immunophenotyping of blood lymphocytes in childhood. Reference values for lymphocyte subpopulations
.
J Pediatr
.
1997
;
130
(
3
):
388
93
.
8.
Li
H
,
Durbin
R
.
Fast and accurate long-read alignment with Burrows-Wheeler transform
.
Bioinformatics
.
2010
;
26
(
5
):
589
95
.
9.
McLaren
W
,
Gil
L
,
Hunt
SE
,
Riat
HS
,
Ritchie
GR
,
Thormann
A
, et al
.
The ensembl variant effect predictor
.
Genome Biol
.
2016
;
17
(
1
):
122
.
10.
Dobin
A
,
Davis
CA
,
Schlesinger
F
,
Drenkow
J
,
Zaleski
C
,
Jha
S
, et al
.
STAR: ultrafast universal RNA-seq aligner
.
Bioinformatics
.
2013
;
29
(
1
):
15
21
.
11.
Robinson
JT
,
Thorvaldsdóttir
H
,
Winckler
W
,
Guttman
M
,
Lander
ES
,
Getz
G
, et al
.
Integrative genomics viewer
.
Nat Biotechnol
.
2011
;
29
(
1
):
24
6
.
12.
Katz
Y
,
Wang
ET
,
Silterra
J
,
Schwartz
S
,
Wong
B
,
Thorvaldsdóttir
H
, et al
.
Quantitative visualization of alternative exon expression from RNA-seq data
.
Bioinformatics
.
2015
;
31
(
14
):
2400
2
.
13.
Jumper
J
,
Evans
R
,
Pritzel
A
,
Green
T
,
Figurnov
M
,
Ronneberger
O
, et al
.
Highly accurate protein structure prediction with AlphaFold
.
Nature
.
2021
;
596
(
7873
):
583
9
.
14.
Kyte
J
,
Doolittle
RF
.
A simple method for displaying the hydropathic character of a protein
.
J Mol Biol
.
1982
;
157
(
1
):
105
32
.
15.
Krawitz
PM
,
Murakami
Y
,
Rieß
A
,
Hietala
M
,
Krüger
U
,
Zhu
N
, et al
.
PGAP2 mutations, affecting the GPI-anchor-synthesis pathway, cause hyperphosphatasia with mental retardation syndrome
.
Am J Hum Genet
.
2013
;
92
(
4
):
584
9
.
16.
Naseer
MI
,
Rasool
M
,
Jan
MM
,
Chaudhary
AG
,
Pushparaj
PN
,
Abuzenadah
AM
, et al
.
A novel mutation in PGAP2 gene causes developmental delay, intellectual disability, epilepsy and microcephaly in consanguineous Saudi family
.
J Neurol Sci
.
2016
;
371
(
371
):
121
5
.
17.
Perez
Y
,
Wormser
O
,
Sadaka
Y
,
Birk
R
,
Narkis
G
,
Birk
OS
.
A rare variant in PGAP2 causes autosomal recessive hyperphosphatasia with mental retardation syndrome, with a mild phenotype in heterozygous carriers
.
BioMed Res Int
.
2017
;
2017
:
3470234
.
18.
Hansen
L
,
Tawamie
H
,
Murakami
Y
,
Mang
Y
,
ur Rehman
S
,
Buchert
R
, et al
.
Hypomorphic mutations in PGAP2, encoding a GPI-anchor-remodeling protein, cause autosomal-recessive intellectual disability
.
Am J Hum Genet
.
2013
;
92
(
4
):
575
83
.
19.
Jezela-Stanek
A
,
Ciara
E
,
Piekutowska-Abramczuk
D
,
Trubicka
J
,
Jurkiewicz
E
,
Rokicki
D
, et al
.
Congenital disorder of glycosylphosphatidylinositol (GPI)-anchor biosynthesis-The phenotype of two patients with novel mutations in the PIGN and PGAP2 genes
.
Eur J Paediatr Neurol
.
2016
;
20
(
3
):
462
73
.
20.
Messina
M
,
Manea
E
,
Cullup
T
,
Tuschl
K
,
Batzios
S
.
Hyperphosphatasia with mental retardation syndrome 3: cerebrospinal fluid abnormalities and correction with pyridoxine and Folinic acid
.
JIMD Rep
.
2023
;
64
(
1
):
42
52
.
21.
Thompson
MD
,
Li
X
,
Spencer-Manzon
M
,
Andrade
DM
,
Murakami
Y
,
Kinoshita
T
, et al
.
Excluding digenic inheritance of PGAP2 and PGAP3 variants in Mabry syndrome (OMIM 239300) patient: phenotypic spectrum associated with PGAP2 gene variants in hyperphosphatasia with mental retardation syndrome-3 (HPMRS3)
.
Genes
.
2023
;
14
(
2
):
359
.
22.
Whyte
MP
,
Ma
NS
,
Mumm
S
,
Gottesman
GS
,
McAlister
WH
,
Nenninger
AR
, et al
.
Persistent idiopathic hyperphosphatasemia from bone alkaline phosphatase in a healthy boy
.
Bone
.
2020
;
138
:
115459
.
23.
Kuki
I
,
Takahashi
Y
,
Okazaki
S
,
Kawawaki
H
,
Ehara
E
,
Inoue
N
, et al
.
Vitamin B6-responsive epilepsy due to inherited GPI deficiency
.
Neurology
.
2013
;
81
(
16
):
1467
9
.
24.
Dedeoğlu
Ö
,
Altaş
H
,
Yılmaz
D
,
Gürkaş
E
,
Gülleroğlu
B
,
Ekşioğlu
S
, et al
.
Callosum thickness: a predictive factor for the first drug efficiency of self-limited epilepsy with centrotemporal spikes (selects)
.
Epilepsy Res
.
2023
;
190
:
107072
.
25.
Sakaguchi
T
,
Žigman
T
,
Petković Ramadža
D
,
Omerza
L
,
Pušeljić
S
,
Ereš Hrvaćanin
Z
, et al
.
A novel PGAP3 mutation in a Croatian boy with brachytelephalangy and a thin corpus callosum
.
Hum Genome Var
.
2018
;
5
:
18005
.
26.
Ramos-Martínez
I
,
Ramos-Martínez
E
,
Cerbón
M
,
Pérez-Torres
A
,
Pérez-Campos Mayoral
L
,
Hernández-Huerta
MT
, et al
.
The role of B cell and T cell glycosylation in systemic lupus erythematosus
.
Int J Mol Sci
.
2023
;
24
(
1
):
863
.
You do not currently have access to this content.