Introduction:TUBGCP6-related disorder is a known cause of autosomal recessive microcephaly and chorioretinopathy, which was originally recognized as a new syndrome based on unique ocular findings on a phenotypic overlap of microcephalic primordial short stature. Since the elucidation of its molecular mechanism, limited families have been published in literature and the disorder remains rare worldwide. Case Presentation: We present the first Indian family with an affected child and sibling fetus with microcephaly, dysmorphism, and agyria/pachygyria complex on brain imaging in both and short stature, intellectual disability, and visual impairment in proband. As for many patients with long diagnostic odysseys, this child also underwent multiple genomic tests. Genome sequencing through the Indian Undiagnosed Disease Program (I-UDP) confirmed the diagnosis in both proband and sibling fetus. Compound heterozygous variants were identified in TUBGCP6 including an eleven base pair deletion (inherited from father) and 405 base pair large deletion (inherited from mother). Reverse phenotyping to confirm the ocular phenotype in proband confirmed TUBGCP6-related microcephaly and chorioretinopathy. We report third trimester microcephaly with ventriculomegaly and abnormal sulcation as part of the antenatal presentation for this condition. Conclusion: This case represents an Indian family with a seemingly obvious clinical diagnosis compounded by a long diagnostic odyssey and the first ever structural variant to be identified via whole genome sequencing in TUBGCP6 in trans with an indel variant.

1.
WHO
.
Child growth standards
.
Geneva
:
WHO
;
2006
. Available from: https://www.who.int/tools/child-growth-standards
2.
Richards
S
,
Aziz
N
,
Bale
S
,
Bick
D
,
Das
S
,
Gastier-Foster
J
, et al
.
Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of medical genetics and genomics and the association for molecular Pathology
.
Genet Med
.
2015
;
17
(
5
):
405
24
.
3.
Chen
X
,
Schulz-Trieglaff
O
,
Shaw
R
,
Barnes
B
,
Schlesinger
F
,
Källberg
M
, et al
.
Manta: rapid detection of structural variants and indels for germline and cancer sequencing applications
.
Bioinformatics
.
2016
;
32
(
8
):
1220
2
.
4.
Geoffroy
V
,
Herenger
Y
,
Kress
A
,
Stoetzel
C
,
Piton
A
,
Dollfus
H
, et al
.
AnnotSV: an integrated tool for structural variations annotation
.
Bioinformatics
.
2018
;
34
(
20
):
3572
4
.
5.
Ogi
T
,
Walker
S
,
Stiff
T
,
Hobson
E
,
Limsirichaikul
S
,
Carpenter
G
, et al
.
Identification of the first ATRIP-deficient patient and novel mutations in ATR define a clinical spectrum for ATR-ATRIP Seckel Syndrome
.
PLoS Genet
.
2012
;
8
(
11
):
e1002945
.
6.
McKusick
VA
,
Stauffer
M
,
Knox
DL
,
Clark
DB
.
Chorioretinopathy with hereditary microcephaly
.
Arch Ophthalmol
.
1966
;
75
(
5
):
597
600
.
7.
Puffenberger
EG
,
Jinks
RN
,
Sougnez
C
,
Cibulskis
K
,
Willert
RA
,
Achilly
NP
, et al
.
Genetic mapping and exome sequencing identify variants associated with five novel diseases
.
PLoS One
.
2012
;
7
(
1
):
e28936
.
8.
Thomas-Wilson
A
,
Schacht
JP
,
Chitayat
D
,
Blaser
S
,
Santos
FJR
,
Glaser
K
, et al
.
Biallelic variants in TUBGCP6 result in microcephaly and chorioretinopathy 1: report of four cases and a literature review
.
Am J Med Genet
.
2023
;
191
(
7
):
1935
41
.
9.
Martin
CA
,
Ahmad
I
,
Klingseisen
A
,
Hussain
MS
,
Bicknell
LS
,
Leitch
A
, et al
.
Mutations in PLK4, encoding a master regulator of centriole biogenesis, cause microcephaly, growth failure and retinopathy
.
Nat Genet
.
2014
;
46
(
12
):
1283
92
.
10.
Hull
S
,
Arno
G
,
Ostergaard
P
,
Pontikos
N
,
Robson
AG
,
Webster
AR
, et al
.
Clinical and molecular characterization of familial exudative vitreoretinopathy associated with microcephaly
.
Am J Ophthalmol
.
2019
;
207
:
87
98
.
11.
Shurygina
MF
,
Simonett
JM
,
Parker
MA
,
Mitchell
A
,
Grigorian
F
,
Lifton
J
, et al
.
Genotype phenotype correlation and variability in microcephaly associated with chorioretinopathy or familial exudative vitreoretinopathy
.
Invest Ophthalmol Vis Sci
.
2020
;
61
(
13
):
2
.
12.
Kolbjer
S
,
Martin
DA
,
Pettersson
M
,
Dahlin
M
,
Anderlid
BM
.
Lissencephaly in an epilepsy cohort: molecular, radiological and clinical aspects
.
Eur J Paediatr Neurol
.
2021
;
30
:
71
81
.
13.
Chen
J
,
Ying
L
,
Zeng
L
,
Li
C
,
Jia
Y
,
Yang
H
, et al
.
The novel compound heterozygous rare variants may impact positively selected regions of TUBGCP6, a microcephaly associated gene
.
Front Ecol Evol
.
2022
;
10
:
1059477
.
14.
Xie
H
,
Ma
J
,
Ji
T
,
Liu
Q
,
Cai
L
,
Wu
Y
.
Vagus nerve stimulation in children with drug-resistant epilepsy of monogenic etiology
.
Front Neurol
.
2022
;
13
:
951850
.
15.
Wang
Y
,
Fu
F
,
Lei
T
,
Zhen
L
,
Deng
Q
,
Zhou
H
, et al
.
Genetic diagnosis of fetal microcephaly at a single tertiary center in China
.
Front Genet
.
2023
;
14
:
1112153
.
16.
Srivastava
S
,
Love-Nichols
JA
,
Dies
KA
,
Ledbetter
DH
,
Martin
CL
,
Chung
WK
, et al
.
Meta-analysis and multidisciplinary consensus statement: exome sequencing is a first-tier clinical diagnostic test for individuals with neurodevelopmental disorders
.
Genet Med
.
2019
;
21
(
11
):
2413
21
.
17.
Sawyer
SL
,
Hartley
T
,
Dyment
DA
,
Beaulieu
CL
,
Schwartzentruber
J
,
Smith
A
, et al
.
Utility of whole-exome sequencing for those near the end of the diagnostic odyssey: time to address gaps in care
.
Clin Genet
.
2016
;
89
(
3
):
275
84
.
18.
Klau
J
,
Abou Jamra
R
,
Radtke
M
,
Oppermann
H
,
Lemke
JR
,
Beblo
S
, et al
.
Exome first approach to reduce diagnostic costs and time – retrospective analysis of 111 individuals with rare neurodevelopmental disorders
.
Eur J Hum Genet
.
2022
;
30
(
1
):
117
25
.
19.
Burdick
KJ
,
Cogan
JD
,
Rives
LC
,
Robertson
AK
,
Koziura
ME
,
Brokamp
E
, et al
.
Limitations of exome sequencing in detecting rare and undiagnosed diseases
.
Am J Med Genet
.
2020
;
182
(
6
):
1400
6
.
20.
Shieh
JT
,
Penon-Portmann
M
,
Wong
KHY
,
Levy-Sakin
M
,
Verghese
M
,
Slavotinek
A
, et al
.
Application of full-genome analysis to diagnose rare monogenic disorders
.
NPJ Genom Med
.
2021
;
6
(
1
):
77
.
21.
Fromer
M
,
Moran
JL
,
Chambert
K
,
Banks
E
,
Bergen
SE
,
Ruderfer
DM
, et al
.
Discovery and statistical genotyping of copy-number variation from whole-exome sequencing depth
.
Am J Hum Genet
.
2012
;
91
(
4
):
597
607
.
22.
Royer-Bertrand
B
,
Cisarova
K
,
Niel-Butschi
F
,
Mittaz-Crettol
L
,
Fodstad
H
,
Superti-Furga
A
.
CNV detection from exome sequencing data in routine diagnostics of rare genetic disorders: opportunities and limitations
.
Genes
.
2021
;
12
(
9
):
1427
.
23.
Palmer
EE
,
Sachdev
R
,
Macintosh
R
,
Melo
US
,
Mundlos
S
,
Righetti
S
, et al
.
Diagnostic yield of whole genome sequencing after nondiagnostic exome sequencing or gene panel in developmental and epileptic encephalopathies
.
Neurology
.
2021
;
96
(
13
):
e1770
82
.
24.
Sun
Y
,
Peng
J
,
Liang
D
,
Ye
X
,
Xu
N
,
Chen
L
, et al
.
Genome sequencing demonstrates high diagnostic yield in children with undiagnosed global developmental delay/intellectual disability: a prospective study
.
Hum Mutat
.
2022
;
43
(
5
):
568
81
.
25.
Bagnall
RD
,
Ingles
J
,
Dinger
ME
,
Cowley
MJ
,
Ross
SB
,
Minoche
AE
, et al
.
Whole genome sequencing improves outcomes of genetic testing in patients with hypertrophic cardiomyopathy
.
J Am Coll Cardiol
.
2018
;
72
(
4
):
419
29
.
26.
Ewans
LJ
,
Minoche
AE
,
Schofield
D
,
Shrestha
R
,
Puttick
C
,
Zhu
Y
, et al
.
Whole exome and genome sequencing in mendelian disorders: a diagnostic and health economic analysis
.
Eur J Hum Genet
.
2022
;
30
(
10
):
1121
31
.
27.
Lindstrand
A
,
Ek
M
,
Kvarnung
M
,
Anderlid
BM
,
Björck
E
,
Carlsten
J
, et al
.
Genome sequencing is a sensitive first-line test to diagnose individuals with intellectual disability
.
Genet Med
.
2022
;
24
(
11
):
2296
307
.
You do not currently have access to this content.