Cataracts are the principal cause of treatable blindness worldwide. Inherited congenital cataract (CC) shows all types of inheritance patterns in a syndromic and nonsyndromic form. There are more than 100 genes associated with cataract with a predominance of autosomal dominant inheritance. A cataract is defined as an opacity of the lens producing a variation of the refractive index of the lens. This variation derives from modifications in the lens structure resulting in light scattering, frequently a consequence of a significant concentration of high-molecular-weight protein aggregates. The aim of this review is to introduce a guide to identify the gene involved in inherited CC. Due to the manifold clinical and genetic heterogeneity, we discarded the cataract phenotype as a cardinal sign; a 4-group classification with the genes implicated in inherited CC is proposed. We consider that this classification will assist in identifying the probable gene involved in inherited CC.

1.
Addison PK, Berry V, Holden KR, Espinal D, Rivera B, et al: A novel mutation in the connexin 46 gene (GJA3) causes autosomal dominant zonular pulverulent cataract in a Hispanic family. Mol Vis 12:791-795 (2006).
2.
Aldahmesh MA, Khan AO, Mohamed J, Alkuraya FS: Novel recessive BFSP2 and PITX3 mutations: insights into mutational mechanisms from consanguineous populations. Genet Med 11:978-981 (2011).
3.
Aldahmesh MA, Khan AO, Mohamed JY, Hijazi H, Al-Owain M, et al: Genomic analysis of pediatric cataract in Saudi Arabia reveals novel candidate disease genes. Genet Med 14:955-962 (2012).
4.
AlFadhli S, Abdelmoaty S, Al-Hajeri A, Behbehani A, Alkuraya F: Novel crystallin gamma B mutations in a Kuwaiti family with autosomal dominant congenital cataracts reveal genetic and clinical heterogeneity. Mol Vis 18:2931-2936 (2012).
5.
Ali M, Buentello-Volante B, McKibbin M, Rocha-Medina JA, Fernandez-Fuentes N, et al: Homozygous FOXE3 mutations cause non-syndromic, bilateral, total sclerocornea, aphakia, microphthalmia and optic disc coloboma. Mol Vis 16:1162-1168 (2010).
6.
Alizadeh A, Clark JI, Seeberger T, Hess J, Blankenship T, et al: Targeted genomic deletion of the lens-specific intermediate filament protein CP49. Invest Ophthalmol Vis Sci 43:3722-3727 (2002).
7.
Alizadeh A, Clark J, Seeberger T, Hess J, Blankenship T, FitzGerald PG: Targeted deletion of the lens fiber cell-specific intermediate filament protein filensin. Invest Ophthalmol Vis Sci 44:5252-5258 (2003).
8.
Amato KR, Wang S, Hastings AK, Youngblood VM, Santapuram PR, et al: Genetic and pharmacologic inhibition of EPHA2 promotes apoptosis in NSCLC. J Clin Invest 124:2037-2049 (2014).
9.
Anjum I, Eiberg H, Baig SM, Tommerup N, Hansen L: A mutation in the FOXE3 gene causes congenital primary aphakia in an autosomal recessive consanguineous Pakistani family. Mol Vis 16:549-555 (2010).
10.
Apple DJ, Ram J, Foster A, Peng Q: Elimination of cataract blindness: a global perspective entering the new millenium. Surv Ophthalmol 45 Suppl 1:S1-196 (2000).
11.
Arora A, Minogue PJ, Liu X, Reddy MA, Ainsworth JR, et al: A novel GJA8 mutation is associated with autosomal dominant lamellar pulverulent cataract: further evidence for gap junction dysfunction in human cataract. J Med Genet 43:e2 (2006).
12.
Arora A, Minogue PJ, Liu X, Addison PK, Russel-Eggitt I, et al: A novel connexin50 mutation associated with congenital nuclear pulverulent cataracts. J Med Genet 45:155-160 (2008).
13.
Asada M, Okano Y, Imamura T, Suyama I, Hase Y, Isshiki G: Molecular characterization of galactokinase deficiency in Japanese patients. J Hum Genet 44:377-382 (1999).
14.
Augusteyn RC: On the growth and internal structure of human lens. Exp Eye Res 90:643-654 (2010).
15.
Azuma N, Hirakiyama A, Inoue T, Asaka A, Yamada M: Mutations of a human homologue of the Drosophila eyes absent gene (EYA1) detected in patients with congenital cataracts and ocular anterior segment anomalies. Hum Mol Genet 9:363-366 (2000).
16.
Bassnett S, Wilmarth PA, David LL: The membrane proteome of the mouse lens fiber cell. Mol Vis 15:2448-2463 (2009).
17.
Bateman JB, Geyer DD, Flodman P, Johannes M, Sikela J, et al: A new betaA1-crystallin splice junction mutation in autosomal dominant cataract. Invest Ophthalmol Vis Sci 41:3278-3285 (2000).
18.
Bateman JB, von-Bischhoffshaunsen FR, Richter L, Flodman P, Burch D, Spence MA: Gene conversion mutation in crystallin, beta-B2 (CRYBB2) in a Chilean family with autosomal dominant cataract. Ophthalmology 114:425-432 (2007).
19.
Beby F, Commeaux C, Bozon M, Denis P, Edery P, Morlé L: New phenotype associated with an Arg116Cys mutation in the CRYAA gene: nuclear cataract, iris coloboma, and microphthalmia. Arch Ophthalmol 125:213-216 (2007).
20.
Behnam M, Imagawa E, Chaleshtori AR, Ronasian F, Salehi M, et al: A novel homozygous mutation in HSF4 causing autosomal recessive congenital cataract. J Hum Genet 61:177-179 (2016).
21.
Bennett TM, Shiels A: A recurrent missense mutation in GJA3 associated with autosomal dominant cataract linked to chromosome 13q. Mol Vis 17:2255-2262 (2011).
22.
Bennett TM, Mackay DS, Knopf HL, Shiels A: A novel missense mutation in the gene for gap-junction protein alpha3 (GJA3) associated with autosomal dominant “nuclear punctate” cataracts linked to chromosome 13q. Mol Vis 10:376-382 (2004).
23.
Bennett TM, Mackay DS, Siegfried CJ, Shiels A: Mutation of the melastatin-related cation channel, TRPM3, underlies inherited cataract and glaucoma. PLoS One 9:e104000 (2014).
24.
Berry V, Mackay D, Khaliq S, Francis PJ, Hameed A, et al: Connexin 50 mutation in a family with congenital “zonular nuclear” pulverulent cataract of Pakistani origin. Hum Genet 105:168-170 (1999).
25.
Berry V, Francis P, Kaushal S, Moore A, Bhattacharya S: Missense mutations in MIP underlie autosomal dominant “polymorphic” and lamellar cataracts linked to 12q. Nat Genet 25:15-17 (2000).
26.
Berry V, Francis P, Reddy MA, Collyer D, Vithana E, et al: Alpha-B crystallin gene (CRYAB) mutation causes dominant congenital posterior polar cataract in humans. Am J Hum Genet 69:1141-1145 (2001).
27.
Berry V, Gregory-Evans C, Emmett W, Waseem N, Raby J, et al: Wolfram gene (WFS1) mutation causes autosomal dominant congenital nuclear cataract in humans. Eur J Hum Genet 21:1356-1360 (2013).
28.
Bhishagratna K: An English translation of the SushrutaSamshitá: Based on original Sanskrit text, with a full and comprehensive introduction, additional texts, different readings, notes, comparative views, index, glossary and plates, in Chowkhamba Sanskrit Series Office, vol 3:XVII, pp 206-210 (Calcutta, Varanasi 2005).
29.
Billingsley G, Santhiya ST, Paterson AD, Ogata K, Wodak S, et al: CRYBA4, a novel human cataract gene, is also involved in microphthalmia. Am J Hum Genet 79:702-709 (2006).
30.
Boon CJ, Klevering BJ, Leroy BP, Hoyng CB, Keunen JE, den Hollander AI: The spectrum of ocular phenotypes caused by mutations in the BEST1 gene. Prog Retin Eye Res 28:187-205 (2009).
31.
Boone PM, Yuan B, Gu S, Ma Z, Gambin T, et al: Hutterite-type cataract maps to chromosome 6p21.32-p21.31, cosegregates with a homozygous mutation in LEMD2, and is associated with sudden cardiac death. Mol Genet Genomic Med 4:77-94 (2015).
32.
Borck G, Kakar N, Hoch J, Friedrich K, Freudenberg J, et al: An Alu repeat-mediated genomic GCNT2 deletion underlies congenital cataracts and adult i blood group. Hum Genet 131:209-216 (2012).
33.
Brémond-Gignac D, Bitoun P, Reis LM, Copin H, Murray JC, Semina EV: Identification of dominant FOXE3 and PAX6 mutations in patients with congenital cataract and aniridia. Mol Vis 16:1705-1711 (2010).
34.
Brennan LA, Kantorow WL, Chauss D, McGreal R, He S, et al: Spatial expression patterns of autophagy genes in the eye lens and induction of autophagy in lens cells. Mol Vis 18:1773-1786 (2012).
35.
Broooks DG, Manova-Todorova K, Farmer J, Lobmayr L, Wilson RB, et al: Ferritin crystal cataracts in hereditary hyperferritinemia cataract syndrome. Invest Ophthalmol Vis Sci 43:1121-1126 (2002).
36.
Bu J, He S, Wang L, Li J, Liu J, Zhang X: A novel splice donor site mutation in EPHA2 caused congenital cataract in a Chinese family. Indian J Ophthalmol 64:364-368 (2016).
37.
Bu L, Jin Y, Shi Y, Chu R, Ban A, Eiberg H, et al: Mutant DNA-binding domain of HSF4 is associated with autosomal dominant lamellar and Marner cataract. Nat Genet 31:276-278 (2002).
38.
Burdon KP, Wirth MG, Mackey DA, Russell- Eggitt IM, Craig JE, et al: A novel mutation in the Connexin 46 gene causes autosomal dominant congenital cataract with incomplete penetrance. J Med Genet 41:e106 (2004).
39.
Bykhovskaya Y, Caiado Canedo AL, Wright KW, Rabinowitz YS: C.57C>T mutation in MIR 184 is responsible for congenital cataracts and corneal abnormalities in a five-generation family from Galicia, Spain. Ophthalmic Genet 36:244-247 (2015).
40.
Chacon-Camacho OF, Buentello-Volante B, Velázquez-Montoya R, Ayala-Ramirez R, Zenteno JC: Homozygosity mapping identifies a GALK1 mutation as the cause of autosomal recessive congenital cataracts in 4 adult siblings. Gene 534:218-221 (2014).
41.
Chance B: Clio Medica: A Series of Primers on the History of Medicine, vol XX, Krumbhaar EB (ed), Cloth (Paul B. Hoeber Inc., New York 1939).
42.
Chen C, Sun Q, Gu M, Liu K, Sun Y, Xu X: A novel Cx50 (GJA8) p.H277Y mutation associated with autosomal dominant congenital cataract identified with targeted next-generation sequencing. Graefes Arch Clin Exp Ophthalmol 253:915-924 (2015).
43.
Chen J, Ma Z, Jiao X, Fariss R, Kantorow WL, et al: Mutations in FYCO1 cause autosomal-recessive congenital cataracts. Am J Hum Genet 88:827-838 (2011).
44.
Chen JH, Qiu J, Chen H, Pang CP, Zhang M: Rapid and cost-effective molecular diagnosis using exome sequencing of one proband with autosomal dominant congenital cataract. Eye (Lond) 28:1511-1516 (2014).
45.
Chen JH, Huang C, Zhang B, Yin S, Liang J, et al: Mutations of RagA GTPase in mTORC1 pathway are associated with autosomal dominant cataracts. PLoS Genet 12:e1006090 (2016).
46.
Chen Q, Ma J, Yan M, Mothobi ME, Liu Y, Zheng F: A novel mutation in CRYAB associated with autosomal dominant congenital nuclear cataract in a Chinese family. Mol Vis 15:1359-1365 (2009).
47.
Chen W, Chen X, Hu Z, Lin H, Zhou F, et al: A missense mutation in CRYBB2 leads to progressive congenital membranous cataract by impacting the solubility and function of βB2-crystallin. PLoS One 8:e81290 (2013).
48.
Clark AR, Lubsen NH, Slingsby C: sHSP in the eye lens: crystallin mutations, cataract and proteostasis. Int J Biochem Cell Biol 44:1687-1697 (2012).
49.
Coccia M, Brooks SP, Webb TR, Christodoulou K, Wozniak IO, et al: X-linked cataract and Nance-Horan syndrome are allelic disorders. Hum Mol Genet 18:2643-2655 (2009).
50.
Cohen D, Bar-Yosef U, Levy J, Gradstein L, Belfair N, et al: Homozygous CRYBB1 deletion mutation underlies autosomal recessive congenital cataract. Invest Ophthalmol Vis Sci 48:2208-2213 (2007).
51.
Conley YP, Erturk D, Keverline A, Mah TS, Keravala A, et al: A juvenile-onset, progressive cataract locus on chromosome 3q21-q22 is associated with a missense mutation in the beaded filament structural protein-2. Am J Hum Genet 66:1426-1431 (2000).
52.
Cui X, Gao L, Jin Y, Zhang Y, Bai J, et al: The E233del mutation in BFSP2 causes a progressive autosomal dominant congenital cataract in a Chinese family. Mol Vis13:2023-2029 (2007).
53.
Dave A, Laurie K, Staffieri SE, Taranath D, Mackey DA, et al: Mutations in the EPHA2 gene are a major contributor to inherited cataracts in South-Eastern Australia. PLoS One 8:e72518 (2013).
54.
Devi RR, Vijayalakshmi P: Novel mutations in GJA8 associated with autosomal dominant congenital cataract and microcornea. Mol Vis 12:190-195 (2006).
55.
Devi RR, Reena C, Vijayalakshmi P: Novel mutations in GJA3 associated with autosomal dominant congenital cataract in the Indian population. Mol Vis 11:846-852 (2005).
56.
Devi RR, Yao W, Vijayalakshmi P, Sergeev YV, Sundaresan P, Hejtmancik JF: Crystallin gene mutations in Indian families with inherited pe- diatric cataract. Mol Vis 14:1157-1170 (2008).
57.
Ding X, Wang B, Luo Y, Hu S, Zhou G, et al: A novel mutation in the connexin 46 (GJA3) gene associated with congenital cataract in a Chinese pedigree. Mol Vis 17:1343-1349 (2011).
58.
Ding X, Zhou N, Lin H, Chen J, Zhao C, et al: A novel MIP gene mutation analysis in a Chinese family affected with congenital progressive punctate cataract. PLoS One 9:e102733 (2014).
59.
Doucette L, Green J, Fernandez B, Johnson GJ, Parfrey P, Young TL: A novel, non-stop mutation in FOXE3 causes an autosomal dominant form of variable anterior segment dysgenesis including Peters anomaly. Eur J Hum Genet 19:293-299 (2011).
60.
Edwards AO: Clinical features of the congenital vitreoretinopathies. Eye (Lond) 22:1233-1242 (2008).
61.
Eiberg H, Lund AM, Warburg M, Rosenberg T: Assignment of congenital cataract Volkmann type (CCV) to chromosome 1p36. Hum Genet 96:33-38 (1995).
62.
Faletra F, d'Adamo AP, Pensiero S, Athanasakis E, Catalano D, et al: A novel CRYBB2 missense mutation causing congenital autosomal dominant cataract in an Italian family. Ophthalmic Genet 34:115-117 (2013).
63.
Ferda Percin E, Ploder LA, Yu JJ, Arici K, Horsford DJ, et al: Human microphthalmia associated with mutations in the retinal homeobox gene CHX10. Nat Genet 25:397-401 (2000).
64.
Ferrini W, Schorderet DF, Othenin-Girard P, Uffer S, Héon E, Munier FL: CRYBA3/A1 gene mutation associated with suture-sparing autosomal dominant congenital nuclear cataract: a novel phenotype. Invest Ophthalmol Vis Sci 45:1436-1441 (2004).
65.
Florijn RJ, Loves W, Maillette de Buy Wenniger-Prick LJ, Mannens MM, Tijmes N, et al: New mutations in the NHS gene in Nance-Horan Syndrome families from the Netherlands. Eur J Hum Genet 14:986-990 (2006).
66.
Forshew T, Johnson CA, Khaliq S, Pasha S, Willis C, et al: Locus heterogeneity in autosomal recessive congenital cataracts: linkage to 9q and germline HSF4 mutations. Hum Genet 117:452-459 (2005).
67.
Gao J, Wang H, Sun X, Varadaraj K, Li L, et al: The effects of age on lens transport. Invest Ophthalmol Vis Sci 54:7174-7187 (2013).
68.
Gao M, Huang S, Li J, Zou Y, Xu P, et al: A novel pathogenic mutation of CRYGD gene in a congenital cataract family (in Chinese). Zhonghua Yi Xue Yi Chuan Xue Za Zhi 4:515-518 (2016).
69.
Gao X, Cheng J, Lu C, Li X, Li F, et al: A novel mutation in the connexin 50 gene (GJA8) associated with autosomal dominant congenital nuclear cataract in a Chinese family. Curr Eye Res 35:597-604 (2010).
70.
Garnai SJ, Huyghe JR, Reed DM, Scott KM, Liebmann JM, et al: Congenital cataracts: de novo gene conversion event in CRYBB2. Mol Vis 20:1579-1593 (2014).
71.
Ge XL, Zhang Y, Wu Y, Lv J, Zhang W, et al: Identification of a novel GJA8 (Cx50) point mutation causes human dominant congenital cataracts. Sci Rep 4:4121 (2014).
72.
Geyer DD, Spence MA, Johannes M, Flodman P, Clancy KP, et al: Novel single-base deletional mutation in major intrinsic protein (MIP) in autosomal dominant cataract. Am J Ophthalmol 141:761-763 (2006).
73.
Gilbert C, Foster A: Childhood blindness in the context of VISION 2020 - the right to sight. Bull World Health Organ 79:227-232 (2001).
74.
Gill D, Klose R, Munier FL, McFadden M, Priston M, et al: Genetic heterogeneity of the Coppock-like cataract: a mutation in CRYBB2 on chromosome 22q11.2. Invest Ophthalmol Vis Sci 41:159-165 (2000).
75.
Gillespie RL, O'Sullivan J, Ashworth J, Bhaskar S, Williams S, et al: Personalized diagnosis and management of congenital cataract by next-generation sequencing. Ophthalmology 121:2124-2137 (2014).
76.
Gong X, Li E, Klier G, Huang Q, Wu Y, et al: Disruption of alpha3 connexin gene leads to proteolysis and cataractogenesis in mice. Cell 91:833-843 (1997).
77.
Gonzalez-Huerta LM, Messina-Baas OM, Cuevas-Covarrubias SA: A family with autosomal dominant primary congenital cataract associated with a CRYGC mutation: evidence of clinical heterogeneity. Mol Vis 13:1333-1338 (2007).
78.
Gradstein L, Zolotushko J, Sergeev YV, Lavy I, Narkis G, et al: Novel GUCY2D mutation causes phenotypic variability of Leber congenital amaurosis in a large kindred. BMC Med Genet 17:52 (2016).
79.
Graw J, Klopp N, Illig T, Preising MN, Lorenz B: Congenital cataract and macular hypoplasia in humans associated with a de novo mutation in CRYAA and compound heterozygous mutations in P. Graefes Arch Clin Exp Ophthalmol 244:912-919 (2006).
80.
Graw J, Schmidt W, Minogue PJ, Rodriguez J, Tong JJ, et al: The GJA8 allele encoding CX50I247M is a rare polymorphism, not a cataract-causing mutation. Mol Vis 15:1881-1885 (2009).
81.
Greenlees R, Mihelec M, Yousoof S, Speidel D, Wu SK, et al: Mutations in SIPA1L3 cause eye defects through disruption of cell polarity and cytoskeleton organization. Hum Mol Genet 24:5789-5804 (2015).
82.
Gu F, Li R, Ma XX, Shi LS, Huang SZ, Ma X: A missense mutation in the gammaD-crystallin gene CRYGD associated with autosomal dominant congenital cataract in a Chinese family. Mol Vis 12:26-31 (2006).
83.
Gu F, Zhai H, Li D, Zhao L, Li C, et al: A novel mutation in major intrinsic protein of the lens gene (MIP) underlies autosomal dominant cataract in a Chinese family. Mol Vis 13:1651-1656 (2007).
84.
Gu F, Luo W, Li X, Wang Z, Lu S, et al: A novel mutation in AlphaA-crystallin (CRYAA) caused autosomal dominant congenital cataract in a large Chinese family. Hum Mutat 29:769 (2008).
85.
Gu J, Qi Y, Wang L, Wang J, Shi L, et al: A new congenital nuclear cataract caused by a missense mutation in the gammaD-crystallin gene (CRYGD) in a Chinese family. Mol Vis 11:971-976 (2005).
86.
Gu Z, Ji B, Wan C, He G, Zhang J, et al: A splice site mutation in CRYBA1/A3 causing autosomal dominant posterior polar cataract in a Chinese pedigree. Mol Vis 16:154-160 (2010).
87.
Guleria K, Sperling K, Singh D, Varon R, Singh JR, Vanita V: A novel mutation in the connexin 46 (GJA3) gene associated with autosomal dominant congenital cataract in an Indian family. Mol Vis 13:1657-1665 (2007).
88.
Guo Y, Su D, Li Q, Yang Z, Ma Z, et al: A nonsense mutation of CRYGC associated with autosomal dominant congenital nuclear cataracts and microcornea in a Chinese pedigree. Mol Vis 18:1874-1880 (2012).
89.
Guo Y, Yuan L, Yi J, Xiao J, Xu H, et al: Identification of a GJA3 mutation in a Chinese family with congenital nuclear cataract using exome sequencing. Indian J Biochem Biophys 50:253-258 (2013).
90.
Hansen L, Yao W, Eiberg H, Funding M, Riise R, et al: The congenital ‘ant-egg' cataract phenotype is caused by a missense mutation in connexin46. Mol Vis 12:1033-1039 (2006).
91.
Hansen L, Eiberg H, Rosenberg T: Novel MAF mutation in a family with congenital cataract-microcornea syndrome. Mol Vis 13:2019-2022 (2007).
92.
Hansen L, Mikkelsen A, Nürnberg P, Nürnberg G, Anjum I, et al: Comprehensive mutational screening in a cohort of Danish families with hereditary congenital cataract. Invest Ophthalmol Vis Sci 50:3291-3303 (2009).
93.
Hansen L, Comyn S, Mang Y, Lind-Thomsen A, Myhre L, et al: The myosin chaperone UNC45B is involved in lens development and autosomal dominant juvenile cataract. Eur J Hum Genet 22:1290-1297 (2014).
94.
Happ H, Weh E, Costakos D, Reis LM, Semina EV: Case report of homozygous deletion involving the first coding exons of GCNT2 isoforms A and B and part of the upstream region of TFAP2A in congenital cataract. BMC Med Genet 17:64 (2016).
95.
He W, Li X, Chen J, Xu L, Zhang F, et al: Genetic linkage analyses and Cx50 mutation detection in a large multiplex Chinese family with hereditary nuclear cataract. Ophthalmic Genet 32:48-53 (2011).
96.
Hejtmancik JF, Smaoui N: Molecular genetics of cataract. Dev Ophthalmol 37:67-82 (2003).
97.
Héon E, Priston M, Schorderet DF, Billingsley GD, Girard PO, et al: The gamma-crystallins and human cataracts: a puzzle made clearer. Am J Hum Genet 65:1261-1277 (1999).
98.
Héon E, Paterson AD, Fraser M, Billingsley G, Priston M, et al: A progressive autosomal recessive cataract locus maps to chromosome 9q13-q22. Am J Hum Genet 68:772-777 (2001).
99.
Hoehenwarter W, Klose J, Jungblut PR: Eye lens proteomics. Amino Acids 30:369-389 (2006).
100.
Hu S, Wang B, Zhou Z, Zhou G, Wang J, et al: A novel mutation in GJA8 causing congenital cataract-microcornea syndrome in a Chinese pedigree. Mol Vis 16:1585-1592 (2010).
101.
Hu Y, Gao L, Feng Y, Yang T, Huang S, et al: Identification of a novel mutation of the gene for gap junction protein α3 (GJA3) in a Chinese family with congenital cataract. Mol Biol Rep 41:4753-4758 (2014).
102.
Hunter M, Angelicheva D, Levy HL, Pueschel SM, Kalaydjieva L: Novel mutations in the GALK1 gene in patients with galactokinase deficiency. Hum Mutat 17:77-78 (2001).
103.
Iliff BW, Riazuddin SA, Gottsch JD: A single-base substitution in the seed region of miR-184 causes EDICT syndrome. Invest Ophthalmol Vis Sci 53:348-353 (2012).
104.
Inaba N, Hiruma T, Togayachi A, Iwasaki H, Wang XH, et al: A novel I-branching beta-1,6-N-acetylglucosaminyltransferase involved in human blood group I antigen expression. Blood 101:2870-2876 (2003).
105.
Iseri SU, Osborne RJ, Farrall M, Wyatt AW, Mirza G, et al: Seeing clearly: the dominant and recessive nature of FOXE3 in eye developmental anomalies. Hum Mutat 30:1378-1386 (2009).
106.
Jakobs PM, Hess JF, FitzGerald PG, Kramer P, Weleber RG, Litt M: Autosomal-dominant congenital cataract associated with a deletion mutation in the human beaded filament protein gene BFSP2. Am J Hum Genet 66:1432-1436 (2000).
107.
Jamieson RV, Perveen R, Kerr B, Carette M, Yardley J, et al: Domain disruption and mutation of the bZIP transcription factor, MAF, associated with cataract, ocular anterior segment dysgenesis and coloboma. Hum Mol Genet 11:33-42 (2002).
108.
Jamieson RV, Farrar N, Stewart K, Perveen R, Mihelec M, et al: Characterization of a familial t(16;22) balanced translocation associated with congenital cataract leads to identification of a novel gene, TMEM114, expressed in the lens and disrupted by the translocation. Hum Mutat 28:968-977 (2007).
109.
Javadiyan S, Craig JE, Souzeau E, Sharma S, Lower KM, et al: Recurrent mutation in the crystallin alpha A gene associated with inherited paediatric cataract. BMC Res Notes 9:83 (2016).
110.
Jia X, Zhang F, Bai J, Gao L, Zhang X, et al: Combinational analysis of linkage and exome sequencing identifies the causative mutation in a Chinese family with congenital cataract. BMC Med Genet 14:107 (2013).
111.
Jiang H, Jin Y, Bu L, Zhang W, Liu J, Cui B, et al: A novel mutation in GJA3 (connexin46) for autosomal dominant congenital nuclear pulverulent cataract. Mol Vis 9:579-583 (2003).
112.
Jiang J, Jin C, Wang W, Tang X, Shentu X, et al: Identification of a novel splice-site mutation in MIP in a Chinese congenital cataract family. Mol Vis 15:38-44 (2009).
113.
Jiaox X, Khan SY, Irum B, Khan AO, Wang Q, et al: Missense mutations in CRYAB are liable for recessive congenital cataracts. PLoS One 10:e0137973 (2015).
114.
Kalaydjieva L, Perez-Lezaun A, Angelicheva D, Onengut S, Dye D, et al: A founder mutation in the GK1 gene is responsible for galactokinase deficiency in Roma (Gypsies). Am J Hum Genet 65:1299-1307 (1999).
115.
Kamachi Y, Uchikawa M, Tanouchi A, Sekido R, Kondoh H: Pax6 and SOX2 form a co-DNA-binding partner complex that regulates initiation of lens development. Genes Dev 15:1272-1286 (2001).
116.
Kannabiran C, Rogan PK, Olmos L, Basti S, Rao GN, et al: Autosomal dominant zonular cataract with sutural opacities is associated with a splice mutation in the betaA3/A1-crystallin gene. Mol Vis 4:21 (1998).
117.
Kannan R, Sreekumar PG, Hinton DR: Novel roles for alpha-crystallins in retinal function and disease. Prog Retin Eye Res 31:576-604 (2012).
118.
Kaul H, Riazuddin SA, Shahid M, Kousar S, Butt NH, et al: Autosomal recessive congenital cataract linked to EPHA2 in a consanguineous Pakistani family. Mol Vis 16:511-517 (2010).
119.
Ke T, Wang QK, Ji B, Wang X, Liu P, et al: Novel HSF4 mutation causes congenital total white cataract in a Chinese family. Am J Ophthalmol 142:298-303 (2006).
120.
Khan AO, Aldahmesh MA, Meyer B: Recessive congenital total cataract with microcornea and heterozygote carrier signs caused by a novel missense CRYAA mutation (R54C). Am J Ophthalmol 144:949-952 (2007).
121.
Khan AO, Aldahmesh MA, Ghadhfan FE, Al-Mesfer S, Alkuraya FS: Founder heterozygous P23T CRYGD mutation associated with cerulean (and coralliform) cataract in 2 Saudi families. Mol Vis 15:1407-1411 (2009).
122.
Khan AO, Aldahmesh MA, Mohamed JY, Alkuraya FS: Clinical and molecular analysis of children with central pulverulent cataract from the Arabian Peninsula. Br J Ophthalmol 96:650-655 (2012).
123.
Khan AO, Aldahmesh MA, Alkuraya FS: Phenotypes of recessive pediatric cataract in a cohort of children with identified homozygous gene mutations (An American Ophthalmological Society Thesis). Trans Am Ophthalmol Soc 113:T7 (2015).
124.
Kmoch S, Brynda J, Asfaw B, Bezouska K, Novák P, et al: Link between a novel human gammaD- crystallin allele and a unique cataract phenotype explained by protein crystallography. Hum Mol Genet 9:1779-1786 (2000).
125.
Kolosha V, Anoia E, de Cespedes C, Gitzelmann R, Shih L, et al: Novel mutations in 13 probands with galactokinase deficiency. Hum Mutat 15:447-453 (2000).
126.
Kondo Y, Saitsu H, Miyamoto T, Lee BJ, Nishiyama K, et al: Pathogenic mutations in two families with congenital cataract identified with whole-exome sequencing. Mol Vis 19:384-389 (2013).
127.
Kondoh H, Uchikawa M, Kamachi Y: Interplay of Pax6 and SOX2 in lens development as a paradigm of genetic switch mechanisms for cell differentiation. Int J Dev Biol 48:819-827 (2004).
128.
Kong XD, Liu N, Shi HR, Dong JM, Zhao ZH, et al: A novel 3-base pair deletion of the CRYAA gene identified in a large Chinese pedigree featuring autosomal dominant congenital perinuclear cataract. Genet Mol Res 14:426-432 (2015).
129.
Kumar M, Agarwal T, Khokhar S, Kumar M, Kaur P, et al: Mutation screening and genotype phenotype correlation of α-crystallin, γ-crystallin and GJA8 gene in congenital cataract. Mol Vis 17:693-707 (2011).
130.
Lachke SA, Alkuraya FS, Kneeland SC, Ohn T, Aboukhalil A, et al: Mutations in the RNA granule component TDRD7 cause cataract and glaucoma. Science 331:1571-1576 (2011).
131.
Laurie KJ, Dave A, Straga T, Souzeau E, Chataway T, et al: Identification of a novel oligomerization disrupting mutation in CRYΑA associated with congenital cataract in a South Australian family. Hum Mutat 34:435-438 (2013).
132.
Li B, Liu Y, Liu Y, Guo H, Hu Z, et al: Identification of a GJA3 mutation in a large family with bilateral congenital cataract. DNA Cell Biol 35:135-139 (2016).
133.
Li D, Wang S, Ye H, Tang Y, Qiu X, et al: Distribution of gene mutations in sporadic congenital cataract in a Han Chinese population. Mol Vis 22:589-598 (2016).
134.
Li FF, Zhu SQ, Wang SZ, Gao C, Huang SZ, et al: Nonsense mutation in the CRYBB2 gene causing autosomal dominant progressive polymorphic congenital coronary cataracts. Mol Vis 14:750-755 (2008).
135.
Li FF, Yang M, Ma X, Zhang Q, Zhang M, et al: Autosomal dominant congenital nuclear cataracts caused by a CRYAA gene mutation. Curr Eye Res 35:492-498 (2010).
136.
Li J, Wang Q, Fu Q, Zhu Y, Zhai Y, et al: A novel connexin 50 gene (gap junction protein, alpha 8) mutation associated with congenital nuclear and zonular pulverulent cataract. Mol Vis 19:767-774 (2013).
137.
Li XQ, Cai HC, Zhou SY, Yang JH, Xi YB, et al: A novel mutation impairing the tertiary structure and stability of γC-crystallin (CRYGC) leads to cataract formation in humans and zebrafish lens. Hum Mutat 2:391-401 (2012).
138.
Li Y, Wang J, Dong B, Man H: A novel connexin46 (GJA3) mutation in autosomal dominant congenital nuclear pulverulent cataract. Mol Vis 10:668-671 (2004).
139.
Liang C, Liang H, Yang Y, Ping L, Jie Q: Mutation analysis of two families with inherited congenital cataracts. Mol Med Rep 12:3469-3475 (2015).
140.
Lin H, Hejtmancik JF, Qi Y: A substitution of arginine to lysine at the COOH-terminus of MIP caused a different binocular phenotype in a congenital cataract family. Mol Vis 13:1822-1827 (2007).
141.
Lin Y, Liu NN, Lei CT, Fan YC, Liu XQ, et al: A novel GJA8 mutation in a Chinese family with autosomal dominant congenital cataract (in Chinese). Zhonghua Yi Xue Yi Chuan Xue Za Zhi 25:59-62 (2008).
142.
Litt M, Carrero-Valenzuela R, LaMorticella DM, Schultz DW, Mitchell TN, et al: Autosomal dominant cerulean cataract is associated with a chain termination mutation in the human beta-crystallin gene CRYBB2. Hum Mol Genet 6:665-668 (1997).
143.
Litt M, Kramer P, LaMorticella DM, Murphey W, Lovrien EW, Weleber RG: Autosomal dominant congenital cataract associated with a missense mutation in the human alpha crystallin gene CRYAA. Hum Mol Genet 7:471-474 (1998).
144.
Liu BF, Liang JJ: Confocal fluorescence microscopy study of interaction between lens MIP26/AQP0 and crystallins in living cells. J Cell Biochem 104:51-58 (2008).
145.
Liu J, Xu J, Gu S, Nicholson BJ, Jiang JX: Aquaporin 0 enhances gap junction coupling via its cell adhesion function and interaction with connexin 50. J Cell Sci 124:198-206 (2011).
146.
Liu L, Zhang Q, Zhou LX, Tang ZH: A novel HSF4 mutation in a Chinese family with autosomal dominant congenital cataract. J Huazhong Univ Sci Technolog Med Sci 35:316-318 (2015).
147.
Liu Q, Wang KJ, Zhu SQ: A novel p.G112E mutation in BFSP2 associated with autosomal dominant pulverulent cataract with sutural opacities. Curr Eye Res 39:1013-1019 (2014).
148.
Liu Y, Zhang X, Luo L, Wu M, Zeng R, et al: A novel alphaB-crystallin mutation associated with autosomal dominant congenital lamellar cataract. Invest Ophthalmol Vis Sci 47:1069-1075 (2006).
149.
Lou D, Tong JP, Zhang LY, Chiang SW, Lam DS, Pang CP: A novel mutation in CRYBB2 responsible for inherited coronary cataract. Eye (Lond) 23:1213-1220 (2009).
150.
Lovicu FJ, Overbeek PA: Overlapping effects of different members of the FGF family on lens fiber differentiation in transgenic mice. Development 125:3365-3377 (1998).
151.
Lu S, Zhao C, Jiao H, Kere J, Tang X, et al: Two Chinese families with pulverulent congenital cataracts and deltaG91 CRYBA1 mutations. Mol Vis 13:1154-1160 (2007).
152.
Lv H, Huang C, Zhang J, Liu Z, Zhang Z, et al: A novel HSF4 gene mutation causes autosomal-dominant cataracts in a Chinese family. G3 (Bethesda) 4:823-828 (2014).
153.
Ma AS, Grigg JR, Ho G, Prokudin I, Farnsworth E, et al: Sporadic and familial congenital cataracts: mutational spectrum and new diagnoses using next-generation sequencing. Hum Mutat 37:371-384 (2016).
154.
Ma J, Becker C, Reyes C, Underhill DM: Cutting edge: FYCO1 recruitment to dectin-1 phagosomes is accelerated by light chain 3 protein and regulates phagosome maturation and reactive oxygen production. J Immunol 192:1356-1360 (2014).
155.
Ma MF, Li LB, Pei YQ, Cheng Z: Use of high-throughput targeted exome sequencing in genetic diagnosis of Chinese family with congenital cataract. Int J Ophthalmol 9:650-654 (2016).
156.
Ma X, Li FF, Wang SZ, Gao C, Zhang M, Zhu SQ: A new mutation in BFSP2 (G1091A) causes autosomal dominant congenital lamellar cataracts. Mol Vis 14:1906-1911 (2008).
157.
Ma ZW, Zheng JQ, Li J, Li XR, Tang X, et al: Two novel mutations of connexin genes in Chinese families with autosomal dominant congenital nuclear cataract. Br J Ophthalmol 89:1535-1537 (2005).
158.
Mackay D, Ionides A, Kibar Z, Rouleau G, Berry V, et al: Connexin46 mutations in autosomal dominant congenital cataract. Am J Hum Genet 64:1357-1364 (1999).
159.
Mackay DS, Andley UP, Shiels A: Cell death triggered by a novel mutation in the alphaA-crystallin gene underlies autosomal dominant cataract linked to chromosome 21q. Eur J Hum Genet 11:784-793 (2003).
160.
Mackay DS, Andley UP, Shiels A: A missense mutation in the gammaD crystallin gene (CRYGD) associated with autosomal dominant ‘coral-like' cataract linked to chromosome 2q. Mol Vis 10:155-162 (2004).
161.
Mackay DS, Bennett TM, Culican SM, Shiels A: Exome sequencing identifies novel and recurrent mutations in GJA8 and CRYGD associated with inherited cataract. Hum Genomics 8:19 (2014).
162.
Marner E, Rosenberg T, Eiberg H: Autosomal dominant congenital cataract: morphology and genetic mapping. Acta Ophthalmol (Copenh) 67:151-158 (1989).
163.
Martinez-Wittinghan FJ, Sellitto C, White TW, Mathias RT, Paul D, Goodenough DA: Lens gap junctional coupling is modulated by connexin identity and the locus of gene expression. Invest Ophthalmol Vis Sci 45:3629-3637 (2004).
164.
McAvoy JW, Chamberlain CG: Fibroblast growth factor (FGF) induces different responses in lens epithelial cells depending on its concentration. Development 107:221-228 (1989).
165.
Messina-Baas OM, Gonzalez-Huerta LM, Cuevas-Covarrubias SA: Two affected siblings with nuclear cataract associated with a novel missense mutation in the CRYGD gene. Mol Vis 12:995-1000 (2006).
166.
Messina-Baas OM, Gonzalez-Garay ML, González- Huerta LM, Toral-López J, Cuevas-Covarrubias SA: Whole exome sequencing reveals a mutation in CRYBB2 in a large Mexican family with autosomal dominant pulverulent cataract. Mol Syndromol 7:87-92 (2016).
167.
Meyer E, Rahman F, Owens J, Pasha S, Morgan NV, et al: Initiation codon mutation in betaB1-crystallin (CRYBB1) associated with autosomal recessive nuclear pulverulent cataract. Mol Vis 15:1014-1019 (2009).
168.
Miao H, Wang B: Eph/ephrin signaling in epithelial development and homeostasis. Int J Biochem Cell Biol 41:762-770 (2009).
169.
Min HY, Qiao PP, Asan, Yan ZH, Jiang HF, et al: Targeted genes sequencing identified a novel 15 bp deletion on GJA8 in a Chinese family with autosomal dominant congenital cataracts. Chin Med J (Engl) 129:860-867 (2016).
170.
Mothobi ME, Guo S, Liu Y, Chen Q, Yussuf AS, et al: Mutation analysis of congenital cataract in a Basotho family identified a new missense allele in CRYBB2. Mol Vis 15:1470-1475 (2009).
171.
Müller M, Bhattacharya SS, Moore T, Prescott Q, Wedig T, et al: Dominant cataract formation in association with a vimentin assembly disrupting mutation. Hum Mol Genet 18:1052-1057 (2009).
172.
Nandrot E, Slingsby C, Basak A, Cherif-Chefchaouni M, Benazzouz B, et al: Gamma-D crystallin gene (CRYGD) mutation causes autosomal dominant congenital cerulean cataracts. J Med Genet 40:262-267 (2003).
173.
Narumi Y, Nishina S, Tokimitsu M, Aoki Y, Kosaki R, et al: Identification of a novel missense mutation of MAF in a Japanese family with congenital cataract by whole exome sequencing: a clinical report and review of literature. Am J Med Genet A 164A:1272-1276 (2014).
174.
Nettleship E, Ogilvie FM: A peculiar form of hereditary congenital cataract. Trans Ophthal Soc UK 26:191-206 (1906).
175.
Ormestad M, Blixt A, Churchill A, Martinsson T, Enerbäck S, Carlsson P: Foxe3 haploinsufficiency in mice: a model for Peters' anomaly. Invest Ophthalmol Vis Sci 43:1350-1357 (2002).
176.
Pankiv S, Alemu EA, Brech A, Bruun JA, Lamark T, et al: FYCO1 is a Rab7 effector that binds to LC3 and PI3P to mediate microtubule plus end-directed vesicle transport. Cell Biol 188:253-269 (2010).
177.
Park JE, Son AI, Zhou R: Roles of EphA2 in development and disease. Genes (Basel) 4:334-357 (2013).
178.
Pasquale EB: Eph receptors and ephrins in cancer: bidirectional signalling and beyond. Nat Rev Cancer 10:165-180 (2010).
179.
Pauli S, Söker T, Klopp N, Illig T, Engel W, Graw J: Mutation analysis in a German family identified a new cataract-causing allele in the CRYBB2 gene. Mol Vis 13:962-967 (2007).
180.
Plotnikova OV, Kondrashov FA, Vlasov PK, Grigorenko AP, Ginter EK, Rogaev EI: Conversion and compensatory evolution of the gamma-crystallin genes and identification of a cataractogenic mutation that reverses the sequence of the human CRYGD gene to an ancestral state. Am J Hum Genet 81:32-43 (2007).
181.
Polyakov AV, Shagina IA, Khlebnikova OV, Evgrafov OV: Mutation in the connexin 50 gene (GJA8) in a Russian family with zonular pulverulent cataract. Clin Genet 60:476-478 (2001).
182.
Ponnam SP, Ramesha K, Tejwani S, Ramamurthy B, Kannabiran C: Mutation of the gap junction protein alpha 8 (GJA8) gene causes autosomal recessive cataract. J Med Genet 44:e85 (2007).
183.
Ponnam SP, Ramesha K, Tejwani S, Matalia J, Kannabiran C: A missense mutation in LIM2 causes autosomal recessive congenital cataract. Mol Vis 14:1204-1208 (2008).
184.
Ponnam SP, Ramesha K, Matalia J, Tejwani S, Ramamurthy B, Kannabiran C: Mutational screening of Indian families with hereditary congenital cataract. Mol Vis 19:1141-1148 (2013).
185.
Pras E, Frydman M, Levy-Nissenbaum E, Bakhan T, Raz J, et al: A nonsense mutation (W9X) in CRYAA causes autosomal recessive cataract in an inbred Jewish Persian family. Invest Ophthalmol Vis Sci 41:3511-3515 (2000).
186.
Pras E, Raz J, Yahalom V, Frydman M, Garzozi HJ, et al: A nonsense mutation in the glucosaminyl (N-acetyl) transferase 2 gene (GCNT2): association with autosomal recessive congenital cataracts. Invest Ophthalmol Vis Sci 45:1940-1945 (2004).
187.
Prokudin I, Simons C, Grigg JR, Storen R, Kumar V, et al: Exome sequencing in developmental eye disease leads to identification of causal variants in GJA8, CRYGC, PAX6 and CYP1B1. Eur J Hum Genet 22:907-915 (2014).
188.
Qi Y, Jia H, Huang S, Lin H, Gu J, et al: A deletion mutation in the betaA1/A3 crystallin gene (CRYBA1/A3) is associated with autosomal dominant congenital nuclear cataract in a Chinese family. Hum Genet 114:192-197 (2004).
189.
Qin L, Guo L, Wang H, Li T, Lou G, et al: A novel MIP mutation in familial congenital nuclear cataracts. Eur J Med Genet 59:488-491 (2016).
190.
Ramachandran RD, Perumalsamy V, Hejtmancik JF: Autosomal recessive juvenile onset cataract associated with mutation in BFSP1. Hum Genet 121:475-482 (2007).
191.
Ramprasad VL, Thool A, Murugan S, Nancarrow D, Vyas P, et al: Truncating mutation in the NHS gene: phenotypic heterogeneity of Nance-Horan syndrome in an Asian Indian family. Invest Ophthalmol Vis Sci 46:17-23 (2005).
192.
Reddy MA, Bateman OA, Chakarova C, Ferris J, Berry V, et al: Characterization of the G91del CRYBA1/3-crystallin protein: a cause of human inherited cataract. Hum Mol Genet 13:945-953 (2004).
193.
Rees MI, Watts P, Fenton I, Clarke A, Snell RG, et al: Further evidence of autosomal dominant congenital zonular pulverulent cataracts linked to 13q11 (CZP3) and a novel mutation in connexin 46 (GJA3). Hum Genet 106:206-209 (2000).
194.
Reich S, Hennermann J, Vetter B, Neumann LM, Shin YS, et al: An unexpectedly high frequency of hypergalactosemia in an immigrant Bosnian population revealed by newborn screening. Pediatr Res 51:598-601 (2002).
195.
Reis LM, Tyler RC, Schneider A, Bardakjian T, Stoler JM, et al: FOXE3 plays a significant role in autosomal recessive microphthalmia. Am J Med Genet A 152A:582-590 (2010).
196.
Reis LM, Tyler RC, Muheisen S, Raggio V, Salviati L, et al: Whole exome sequencing in dominant cataract identifies a new causative factor, CRYBA2, and a variety of novel alleles in known genes. Hum Genet 132:761-770 (2013).
197.
Reis LM, Tyler RC, Semina EV: Identification of a novel C-terminal extension mutation in EPHA2 in a family affected with congenital cataract. Mol Vis 20:836-842 (2014).
198.
Ren Z, Li A, Shastry BS, Padma T, Ayyagari R, et al: A 5-base insertion in the gammaC-crystallin gene is associated with autosomal dominant variable zonular pulverulent cataract. Hum Genet 106:531-537 (2000).
199.
Riazuddin SA, Yasmeen A, Yao W, Sergeev YV, Zhang Q, et al: Mutations in betaB3-crystallin associated with autosomal recessive cataract in two Pakistani families. Invest Ophthalmol Vis Sci 46:2100-2106 (2005).
200.
Richardson JS: beta-Sheet topology and the relatedness of proteins. Nature 268:495-500 (1977).
201.
Richter L, Flodman P, Barria F, Burch D, Brown S, et al: Clinical variability of autosomal dominant cataract, microcornea and corneal opacity and novel mutation in the alpha A crystallin gene (CRYAA). Am J Med Genet A 146A:833-842 (2008).
202.
Roshan M, Vijaya PH, Lavanya GR, Shama PK, Santhiya ST, et al: A novel human CRYGD mutation in a juvenile autosomal dominant cataract. Mol Vis 16:887-896 (2010).
203.
Safieh LA, Khan AO, Alkuraya FS: Identification of a novel CRYAB mutation associated with autosomal recessive juvenile cataract in a Saudi family. Mol Vis 15:980-984 (2009).
204.
Sajjad N, Goebel I, Kakar N, Cheema AM, Kubisch C, Ahmad J: A novel HSF4 gene mutation (p.R405X) causing autosomal recessive congenital cataracts in a large consanguineous family from Pakistan. BMC Med Genet 9:99 (2008).
205.
Santana A, Waiswol M, Arcieri ES, Cabral de Vasconcellos JP, Barbosa de Melo M: Mutation analysis of CRYAA, CRYGC, and CRYGD associated with autosomal dominant congenital cataract in Brazilian families. Mol Vis 15:793-800 (2009).
206.
Santhiya ST, Shyam M, Rawlley D, Vijayalakshmi P, Namperumalsamy P, et al: Novel mutations in the gamma-crystallin genes cause autosomal dominant congenital cataracts. J Med Genet 39:352-358 (2002).
207.
Santhiya ST, Manisastry SM, Rawlley D, Malathi R, Anishetty S, et al: Mutation analysis of congenital cataracts in Indian families: identification of SNPS and a new causative allele in CRYBB2 gene. Invest Ophthalmol Vis Sci 45:3599-3607 (2004).
208.
Santhiya ST, Soker T, Klopp N, Illig T, Prakash MV, et al: Identification of a novel, putative cataract-causing allele in CRYAA (G98R) in an Indian family. Mol Vis 12:768-737 (2006).
209.
Santhiya ST, Kumar GS, Sudhakar P, Gupta N, Klopp N, et al: Molecular analysis of cataract families in India: new mutations in the CRYBB2 and GJA3 genes and rare polymorphisms. Mol Vis 16:1837-1847 (2010).
210.
Schmidt W, Klopp N, Illig T, Graw J: A novel GJA8 mutation causing a recessive triangular cataract. Mol Vis 14:851-856 (2008).
211.
Semina EV, Brownell I, Mintz-Hittner HA, Murray JC, Jamrich M: Mutations in the human forkhead transcription factor FOXE3 associated with anterior segment ocular dysgenesis and cataracts. Hum Mol Genet 10:231-236 (2001).
212.
Senthil Kumar G, Kyle JW, Minogue PJ, Dinesh Kumar K, Vasantha K, et al: An MIP/AQP0 mutation with impaired trafficking and function underlies an autosomal dominant congenital lamellar cataract. Exp Eye Res 110:136-141 (2013).
213.
Sharma S, Burdon KP, Dave A, Jamieson RV, Yaron Y, et al: Novel causative mutations in patients with Nance-Horan syndrome and altered localization of the mutant NHS-A protein isoform. Mol Vis 14:1856-1864 (2008).
214.
Shentu X, Yao K, Xu W, Zheng S, Hu S, Gong X: Special fasciculiform cataract caused by a mutation in the gammaD-crystallin gene. Mol Vis 10:233-239 (2004).
215.
Shentu X, Zhao SJ, Zhang L, Miao Q: A novel p.R890C mutation in EPHA2 gene associated with progressive childhood posterior cataract in a Chinese family. Int J Ophthalmol 6:34-38 (2013).
216.
Shentu X, Miao Q, Tang X, Yin H, Zhao Y: Identification and functional analysis of a novel MIP gene mutation associated with congenital cataract in a Chinese family. PLoS One 10: e0126679 (2015).
217.
Shiels A, Mackay D, Ionides A, Berry V, Moore A, Bhattacharya S: A missense mutation in the human connexin50 gene (GJA8) underlies autosomal dominant “zonular pulverulent” cataract, on chromosome 1q. Am J Hum Genet 62:526-532 (1998).
218.
Shiels A, Bassnett S, Varadaraj K, Mathias R, Al-Ghoul K, et al: Optical dysfunction of the crystalline lens in aquaporin-0-deficient mice. Physiol Genomics 7:179-186 (2001).
219.
Shiels A, Bennett TM, Knopf HL, Yamada K, Yoshiura K, et al: CHMP4B, a novel gene for autosomal dominant cataracts linked to chromosome 20q. Am J Hum Genet 81:596-606 (2007).
220.
Shiels A, Bennett TM, Knopf HL, Maraini G, Li A, et al: The EPHA2 gene is associated with cataracts linked to chromosome 1p. Mol Vis 14:2042-2055 (2008).
221.
Shiels A, Bennett TM, Hejtmancik JF: Cat-Map: putting cataract on the map. Mol Vis 16:2007-2015 (2010).
222.
Singh R, Ram J, Kaur G, Prasad R: Galactokinase deficiency induced cataracts in Indian infants: identification of 4 novel mutations in GALK gene. Curr Eye Res 37:949-954 (2012).
223.
Slingsby C, Wistow GJ, Clark AR: Evolution of crystallins for a role in the vertebrate eye lens. Protein Sci 22:367-380 (2013).
224.
Smaoui N, Beltaief O, BenHamed S, M'Rad R, Maazoul F, et al: A homozygous splice mutation in the HSF4 gene is associated with an autosomal recessive congenital cataract. Invest Ophthalmol Vis Sci 45:2716-2721 (2004).
225.
Song Z, Wang L, Liu Y, Xiao W: A novel nonsense mutation in the MIP gene linked to congenital posterior polar cataracts in a Chinese family. PLoS One 10:e0119296 (2015).
226.
Stambolian D, Ai Y, Sidjanin D, Nesburn K, Sathe G, et al: Cloning of the galactokinase cDNA and identification of mutations in two families with cataracts. Nat Genet 10:307-312 (1995).
227.
Stephan DA, Gillanders E, Vanderveen D, Freas-Lutz D, Wistow G, et al: Progressive juvenile-onset punctate cataracts caused by mutation of the gammaD-crystallin gene. Proc Natl Acad Sci USA 96:1008-1012 (1999).
228.
Su D, Guo Y, Li Q, Guan L, Zhu S, Ma X: A novel mutation in CRYAA is associated with autosomal dominant suture cataracts in a Chinese family. Mol Vis 18:3057-3063 (2012).
229.
Su D, Yang Z, Li Q, Guan L, Zhang H, et al: Identification and functional analysis of GJA8 mutation in a Chinese family with autosomal dominant perinuclear cataracts. PLoS One 8: e59926 (2013).
230.
Sun H, Ma Z, Li Y, Liu B, Li Z, et al: Gamma-S crystallin gene (CRYGS) mutation causes dominant progressive cortical cataract in humans. J Med Genet 42:706-710 (2005).
231.
Sun W, Xiao X, Li S, Guo X, Zhang Q: Mutational screening of six genes in Chinese patients with congenital cataract and microcornea. Mol Vis 17:1508-1513 (2011a).
232.
Sun W, Xiao X, Li S, Guo X, Zhang Q: Mutation analysis of 12 genes in Chinese families with congenital cataracts. Mol Vis 17:2197-2206 (2011b).
233.
Sun W, Xiao X, Li S, Guo X, Zhang Q: Exome sequencing of 18 Chinese families with congenital cataracts: a new sight of the NHS gene. PLoS One 9:e100455 (2014).
234.
Valleix S, Niel F, Nedelec B, Algros MP, Schwartz C, et al: Homozygous nonsense mutation in the FOXE3 gene as a cause of congenital primary aphakia in humans. Am J Hum Genet 79:358-364 (2006).
235.
Vanita V, Singh D: A missense mutation in CRYGD linked with autosomal dominant congenital cataract of aculeiform type. Mol Cell Biochem 368:167-172. (2012).
236.
Vanita V, Sarhadi V, Reis A, Jung M, Singh D, et al: A unique form of autosomal dominant cataract explained by gene conversion between beta-crystallin B2 and its pseudogene. J Med Genet 38:392-396 (2001).
237.
Vanita V, Singh D, Robinson PN, Sperling K, Singh JR: A novel mutation in the DNA-binding domain of MAF at 16q23.1 associated with autosomal dominant “cerulean cataract” in an Indian family. Am J Med Genet A 140:558-566 (2006).
238.
Vanita V, Singh JR, Singh D, Varon R, Sperling K: A mutation in GJA8 (p.P88Q) is associated with “balloon-like” cataract with Y-sutural opacities in a family of Indian origin. Mol Vis 14:1171-1175 (2008).
239.
Vanita V, Singh JR, Singh D, Varon R, Sperling K: Novel mutation in the gamma-S crystallin gene causing autosomal dominant cataract. Mol Vis 15:476-481 (2009).
240.
Wang H, Zhang T, Wu D, Zhang J: A novel beaded filament structural protein 1 (BFSP1) gene mutation associated with autosomal dominant congenital cataract in a Chinese family. Mol Vis 19:2590-2595 (2013).
241.
Wang J, Ma X, Gu F, Liu NP, Hao XL, et al: A missense mutation S228P in the CRYBB1 gene causes autosomal dominant congenital cataract. Chin Med J (Engl) 120:820-824 (2007).
242.
Wang KJ, Zhu SQ: A novel p.F206I mutation in Cx46 associated with autosomal dominant congenital cataract. Mol Vis 18:968-973 (2012).
243.
Wang KJ, Li SS, Yun B, Ma WX, Jiang TG, Zhu SQ: A novel mutation in MIP associated with congenital nuclear cataract in a Chinese family. Mol Vis 17:70-77 (2011a).
244.
Wang KJ, Wang BB, Zhang F, Zhao Y, Ma X, Zhu SQ: Novel beta-crystallin gene mutations in Chinese families with nuclear cataracts. Arch Ophthalmol 129:337-343 (2011b).
245.
Wang L, Lin H, Gu J, Su H, Huang S, Qi Y: Autosomal-dominant cerulean cataract in a Chinese family associated with gene conversion mutation in beta-B2-crystallin. Ophthalmic Res 41:148-153 (2009).
246.
Wang L, Luo Y, Wen W, Zhang S, Lu Y: Another evidence for a D47N mutation in GJA8 associated with autosomal dominant congenital cataract. Mol Vis 17:2380-2385 (2011).
247.
Wang L, Chen Y, Chen X, Sun X: Further evidence for P59L mutation in GJA3 associated with autosomal dominant congenital cataract. Indian J Ophthalmol 64:508-512 (2016).
248.
Wang W, Jiang J, Zhu Y, Li J, Jin C, et al: A novel mutation in the major intrinsic protein (MIP) associated with autosomal dominant congenital cataracts in a Chinese family. Mol Vis 16:534-539 (2010).
249.
Weisschuh N, Aisenbrey S, Wissinger B, Riess A: Identification of a novel CRYBB2 missense mutation causing congenital autosomal dominant cataract. Mol Vis 18:174-180 (2012).
250.
Willoughby CE, Arab S, Gandhi R, Zeinali S, Arab S, et al: A novel GJA8 mutation in an Iranian family with progressive autosomal dominant congenital nuclear cataract. J Med Genet 40:e124 (2003).
251.
Willoughby CE, Shafiq A, Ferrini W, Chan LL, Billingsley G, et al: CRYBB1 mutation associated with congenital cataract and microcornea. Mol Vis 11:587-593 (2005).
252.
Wu Q, Shi H, Liu N, Lu N, Jiang M, et al: Mutation analysis of CRYBB1 gene and prenatal diagnosis for a Chinese kindred featuring autosomal dominant congenital nuclear cataract (in Chinese). Zhonghua Yi Xue Yi Chuan Xue Za Zhi 30:266-269 (2013).
253.
Wussuki-Lior O, Abu-Horowitz A, Netzer I, Almer Z, Morad Y, et al: Hematologic biomarkers in childhood cataracts. Mol Vis 17:1011-1015 (2011).
254.
Xia XY, Li N, Cao X, Wu QY, Li TF, et al: A novel COL4A1 gene mutation results in autosomal dominant non-syndromic congenital cataract in a Chinese family. BMC Med Genet 15:97 (2014a).
255.
Xia XY, Wu QY, An LM, Li WW, Li N, et al: A novel P20R mutation in the alpha-B crystallin gene causes autosomal dominant congenital posterior polar cataracts in a Chinese family. BMC Ophthalmol 14:108 (2014b).
256.
Xiao X, Li W, Wang P, Li L, Li S, et al: Cerulean cataract mapped to 12q13 and associated with a novel initiation codon mutation in MIP. Mol Vis 17:2049-2055 (2011).
257.
Xu WZ, Zheng S, Xu SJ, Huang W, Yao K, Zhang SZ: Autosomal dominant coralliform cataract related to a missense mutation of the gammaD-crystallin gene. Chin Med J (Engl) 117:727-732 (2004).
258.
Yan M, Xiong C, Ye SQ, Chen Y, Ke M, et al: A novel connexin 50 (GJA8) mutation in a Chinese family with a dominant congenital pulverulent nuclear cataract. Mol Vis 14:418-424 (2008).
259.
Yang G, Xing B, Liu G, Lu X, Jia X, et al: A novel mutation in the GJA3 (connexin46) gene is associated with autosomal dominant congenital nuclear cataract in a Chinese family. Mol Vis 17:1070-1073 (2011a).
260.
Yang G, Zhang G, Wu Q, Zhao J: A novel mutation in the MIP gene is associated with autosomal dominant congenital nuclear cataract in a Chinese family. Mol Vis 17:1320-1323 (2011b).
261.
Yang G, Chen Z, Zhang W, Liu Z, Zhao J: Novel mutations in CRYGD are associated with congenital cataracts in Chinese families. Sci Rep 6:18912 (2016).
262.
Yang J, Zhu Y, Gu F, He X, Cao Z, et al: A novel nonsense mutation in CRYBB1 associated with autosomal dominant congenital cataract. Mol Vis 14:727-731 (2008).
263.
Yang J, Li D, Fan Q, Cai L, Qiu X, et al: The polymorphisms with cataract susceptibility impair the EPHA2 receptor stability and its cytoprotective function. J Ophthalmol 2015: 401894 (2015).
264.
Yang Z, Li Q, Ma Z, Guo Y, Zhu S, Ma X: A G→T splice site mutation of CRYBA1/A3 associated with autosomal dominant suture cataracts in a Chinese family. Mol Vis 17:2065-2071 (2011).
265.
Yang Z, Su D, Li Q, Yang F, Ma Z, et al: A novel T→G splice site mutation of CRYBA1/A3 associated with autosomal dominant nuclear cataracts in a Chinese family. Mol Vis 18:1283-1288 (2012).
266.
Yang Z, Su D, Li Q, Ma Z, Yang F, et al: A R54L mutation of CRYAA associated with autosomal dominant nuclear cataracts in a Chinese family. Curr Eye Res 38:1221-1228 (2013).
267.
Yang Z, Li Q, Ma X, Zhu SQ: Mutation analysis in Chinese families with autosomal dominant hereditary cataracts. Curr Eye Res 40:1225-1231 (2015).
268.
Yao K, Tang X, Shentu X, Wang K, Rao H, Xia K: Progressive polymorphic congenital cataract caused by a CRYBB2 mutation in a Chinese family. Mol Vis 11:758-763 (2005).
269.
Yao K, Jin C, Zhu N, Wang W, Wu R, et al: A nonsense mutation in CRYGC associated with autosomal dominant congenital nuclear cataract in a Chinese family. Mol Vis 14:1272-1276 (2008).
270.
Yao K, Li J, Jin C, Wang W, Zhu Y, et al: Characterization of a novel mutation in the CRYBB2 gene associated with autosomal dominant congenital posterior subcapsular cataract in a Chinese family. Mol Vis 17:144-152 (2011a).
271.
Yao K, Wang W, Zhu Y, Jin C, Shentu X, et al: A novel GJA3 mutation associated with congenital nuclear pulverulent and posterior polar cataract in a Chinese family. Hum Mutat 32:1367-1370. (2011b).
272.
Yasmeen A, Riazuddin SA, Kaul H, Mohsin S, Khan M, et al: Autosomal recessive congenital cataract in consanguineous Pakistani families is associated with mutations in GALK1. Mol Vis 16:682-688 (2010).
273.
Yu LC, Twu YC, Chang CY, Lin M: Molecular basis of the adult i phenotype and the gene responsible for the expression of the human blood group I antigen. Blood 98:3840-3845 (2001).
274.
Yu Y, Li J, Xu J, Wang Q, Yu Y, Yao K: Congenital polymorphic cataract associated with a G to A splice site mutation in the human beta-crystallin gene CRYβA3/A1. Mol Vis 18:2213-2220 (2012).
275.
Yu Y, Yu Y, Chen P, Li J, Zhu Y, et al: A novel MIP gene mutation associated with autosomal dominant congenital cataracts in a Chinese family. BMC Med Genet 15:6 (2014).
276.
Yu Y, Wu M, Chen X, Zhu Y, Gong X, Yao K: Identification and functional analysis of two novel connexin 50 mutations associated with autosome dominant congenital cataracts. Sci Rep 6:26551 (2016).
277.
Yuan L, Guo Y, Yi J, Xiao J, Yuan J, et al: Identification of a novel GJA3 mutation in congenital nuclear cataract. Optom Vis Sci 92:337-342 (2015).
278.
Yuan L, Yi J, Lin Q, Xu H, Deng X, et al: Identification of a PRX variant in a Chinese family with congenital cataract by exome sequencing. QJM 109:731-735 (2016).
279.
Zeng L, Liu W, Feng W, Wang X, Dang H, et al: A novel donor splice-site mutation of major intrinsic protein gene associated with congenital cataract in a Chinese family. Mol Vis 19:2244-2249 (2013).
280.
Zenteno JC, Morales ME, Moran-Barroso V, Sanchez-Navarro A: CRYGD gene analysis in a family with autosomal dominant congenital cataract: evidence for molecular homogeneity and intrafamilial clinical heterogeneity in aculeiform cataract. Mol Vis 11:438-442 (2005).
281.
Zhai Y, Li J, Zhu Y, Xia Y, Wang W, et al: A nonsense mutation of γD-crystallin associated with congenital nuclear and posterior polar cataract in a Chinese family. Int J Med Sci 11:158-163 (2014).
282.
Zhang J, Zhang Y, Fang F, Mu W, Zhang N, et al: Congenital cataracts due to a novel 2-bp deletion in CRYBA1/A3. Mol Med Rep 10:1614-1618 (2014).
283.
Zhang L, Gao L, Li Z, Qin W, Gao W, et al: Progressive sutural cataract associated with a BFSP2 mutation in a Chinese family. Mol Vis 12:1626-1631 (2006).
284.
Zhang L, Qu X, Su S, Guan L, Liu P: A novel mutation in GJA3 associated with congenital Coppock-like cataract in a large Chinese family. Mol Vis 18:2114-2118 (2012).
285.
Zhang LY, Yam GH, Fan DS, Tam PO, Lam DS, Pang CP: A novel deletion variant of gammaD-crystallin responsible for congenital nuclear cataract. Mol Vis 13:2096-2104 (2007).
286.
Zhang LY, Yam GH, Tam PO, Lai RY, Lam DS, et al: An alphaA-crystallin gene mutation, Arg12Cys, causing inherited cataract-microcornea exhibits an altered heat-shock response. Mol Vis 15:1127-1138 (2009a).
287.
Zhang LY, Gong B, Tong JP, Fan DS, Chiang SW, et al: A novel gammaD-crystallin mutation causes mild changes in protein properties but leads to congenital coralliform cataract. Mol Vis 15:1521-1529 (2009b).
288.
Zhang Q, Guo X, Xiao X, Yi J, Jia X, Hejtmancik JF: Clinical description and genome wide linkage study of Y-sutural cataract and myopia in a Chinese family. Mol Vis 10:890-900 (2004).
289.
Zhao H, Brown PH, Magone MT, Schuck P: The molecular refractive function of lens γ- crystallins. J Mol Biol 411:680-699 (2011).
290.
Zhao L, Chen XJ, Zhu J, Xi YB, Yang X, et al: Lanosterol reverses protein aggregation in cataracts. Nature 523:607-611 (2015).
291.
Zheng JQ, Ma ZW, Sun HM: A heterozygous transversion of connexin 50 in a family with congenital nuclear cataract in the northeast of China (in Chinese). Zhonghua Yi Xue Yi Chuan Xue Za Zhi 22:76-78 (2005).
292.
Zhou D, Ji H, Wei Z, Guo L, Li Y, et al: A novel insertional mutation in the connexin 46 (gap junction alpha 3) gene associated with autosomal dominant congenital cataract in a Chinese family. Mol Vis 19:789-795 (2013).
293.
Zhou G, Zhou N, Hu S, Zhao L, Zhang C, Qi Y: A missense mutation in CRYBA4 associated with congenital cataract and microcornea. Mol Vis 16:1019-1024 (2010).
294.
Zhou Z, Hu S, Wang B, Zhou N, Zhou S, et al: Mutation analysis of congenital cataract in a Chinese family identified a novel missense mutation in the connexin 46 gene (GJA3). Mol Vis 16:713-719 (2010).
295.
Zhu Y, Shentu X, Wang W, Li J, Jin C, Yao K: A Chinese family with progressive childhood cataracts and IVS3+1G>A CRYBA3/A1 mutations. Mol Vis 16:2347-2353 (2010).
296.
Zhu Y, Yu H, Wang W, Gong X, Yao K: A novel GJA8 mutation (p.V44A) causing autosomal dominant congenital cataract. PLoS One 9: e115406 (2014).
297.
Zhuang X, Wang L, Song Z, Xiao W: A novel insertion variant of CRYGD is associated with congenital nuclear cataract in a Chinese family. PLoS One 10:e0131471 (2015).
You do not currently have access to this content.