Cerebral cavernous malformations (CCMs) are prevalent slow-flow vascular lesions which harbour the risk to develop intracranial haemorrhages, focal neurological deficits, and epileptic seizures. Autosomal dominantly inherited CCMs were found to be associated with heterozygous inactivating mutations in 3 genes, CCM1(KRIT1), CCM2(MGC4607), and CCM3(PDCD10) in 1999, 2003 and 2005, respectively. Despite the availability of high-throughput sequencing techniques, no further CCM gene has been published since. Here, we report on the identification of an autosomal dominantly inherited frameshift mutation in a gene of thus far unknown function, FAM222B(C17orf63), through exome sequencing of CCM patients mutation-negative for CCM1-3. A yeast 2-hybrid screen revealed interactions of FAM222B with the tubulin cytoskeleton and STAMBP which is known to be associated with microcephaly-capillary malformation syndrome. However, a phenotype similar to existing models was not found, neither in fam222bb/fam222ba double mutant zebrafish generated by transcription activator-like effector nucleases nor in an in vitro sprouting assay using human umbilical vein endothelial cells transfected with siRNA against FAM222B. These observations led to the assumption that aberrant FAM222B is not involved in the formation of CCMs.

1.
Albers CA, Paul DS, Schulze H, Freson K, Stephens JC, et al: Compound inheritance of a low-frequency regulatory SNP and a rare null mutation in exon-junction complex subunit RBM8A causes TAR syndrome. Nat Genet 44:435-439 (2012).
2.
Al-Shahi Salman R, Hall JM, Horne MA, Moultrie F, Josephson CB, et al: Untreated clinical course of cerebral cavernous malformations: a prospective, population-based cohort study. Lancet Neurol 11:217-224 (2012).
3.
Béraud-Dufour S, Gautier R, Albiges-Rizo C, Chardin P, Faurobert E: Krit1 interactions with microtubules and membranes are regulated by Rap1 and integrin cytoplasmic domain associated protein-1. FEBS J 274:5518-5532 (2007).
4.
Bergametti F, Denier C, Labauge P, Arnoult M, Boetto S, et al: Mutations within the programmed cell death 10 gene cause cerebral cavernous malformations. Am J Hum Genet 76:42-51 (2005).
5.
Chen JN, Haffter P, Odenthal J, Vogelsang E, Brand M, et al: Mutations affecting the cardiovascular system and other internal organs in zebrafish. Development 123:293-302 (1996).
6.
Del Curling O Jr, Kelly DL Jr, Elster AD, Craven TE: An analysis of the natural history of cavernous angiomas. J Neurosurg 75:702-708 (1991).
7.
Denier C, Labauge P, Bergametti F, Marchelli F, Riant F, et al: Genotype-phenotype correlations in cerebral cavernous malformations patients. Ann Neurol 60:550-556 (2006).
8.
Fauth C, Rostasy K, Rath M, Gizewski E, Lederer AG, et al: Highly variable intrafamilial manifestations of a CCM3 mutation ranging from acute childhood cerebral haemorrhage to late-onset meningiomas. Clin Neurol Neurosurg 128:41-43 (2015).
9.
Fischer A, Zalvide J, Faurobert E, Albiges-Rizo C, Tournier-Lasserve E: Cerebral cavernous malformations: from CCM genes to endothelial cell homeostasis. Trends Mol Med 19:302-308 (2013).
10.
Fisher OS, Boggon TJ: Signaling pathways and the cerebral cavernous malformations proteins: lessons from structural biology. Cell Mol Life Sci 71:1881-1892 (2014).
11.
Formstecher E, Aresta S, Collura V, Hamburger A, Meil A, et al: Protein interaction mapping: a Drosophila case study. Genome Res 15:376-384 (2005).
12.
Gilissen C, Hoischen A, Brunner HG, Veltman JA: Disease gene identification strategies for exome sequencing. Eur J Hum Genet 20:490-497 (2012).
13.
Gunel M, Laurans MS, Shin D, DiLuna ML, Voorhees J, et al: KRIT1, a gene mutated in cerebral cavernous malformation, encodes a microtubule-associated protein. Proc Natl Acad Sci USA 99:10677-10682 (2002).
14.
Heiss M, Hellström M, Kalén M, May T, Weber H, et al: Endothelial cell spheroids as a versatile tool to study angiogenesis in vitro. FASEB J 29:3076-3084 (2015).
15.
Hogan BM, Bussmann J, Wolburg H, Schulte-Merker S: ccm1 cell autonomously regulates endothelial cellular morphogenesis and vascular tubulogenesis in zebrafish. Hum Mol Genet 17:2424-2432 (2008).
16.
Hoischen A, van Bon BW, Gilissen C, Arts P, van Lier B, et al: De novo mutations of SETBP1 cause Schinzel-Giedion syndrome. Nat Genet 42:483-485 (2010).
17.
Hoischen A, van Bon BW, Rodríguez-Santiago B, Gilissen C, Vissers LE, et al: De novo nonsense mutations in ASXL1 cause Bohring-Opitz syndrome. Nat Genet 43:729-731 (2011).
18.
Kok FO, Shin M, Ni CW, Gupta A, Grosse AS, et al: Reverse genetic screening reveals poor correlation between morpholino-induced and mutant phenotypes in zebrafish. Dev Cell 32:97-108 (2015).
19.
Korff T, Augustin HG: Integration of endothelial cells in multicellular spheroids prevents apoptosis and induces differentiation. J Cell Biol 143:1341-1352 (1998).
20.
Labauge P, Laberge S, Brunereau L, Levy C, Tournier-Lasserve E, et al: Hereditary cerebral cavernous angiomas: clinical and genetic features in 57 French families. Société Française de Neurochirurgie. Lancet 352:1892-1897 (1998).
21.
Lodato MA, Woodworth MB, Lee S, Evrony GD, Mehta BK, et al: Somatic mutation in single human neurons tracks developmental and transcriptional history. Science 350:94-98 (2015).
22.
Mably JD, Chuang LP, Serluca FC, Mohideen MA, Chen JN, Fishmann MC: santa and valentine pattern concentric growth of cardiac myocardium in the zebrafish. Development 133:3139-3146 (2006).
23.
McDonald DA, Shi C, Shenkar R, Gallione CJ, Akers AL, et al: Lesions from patients with sporadic cerebral cavernous malformations harbor somatic mutations in the CCM genes: evidence for a common biochemical pathway for CCM pathogenesis. Hum Mol Genet 23:4357-4370 (2014).
24.
McDonell LM, Mirzaa GM, Alcantara D, Schwartzentruber J, Carter MT, et al: Mutations in STAMBP, encoding a deubiquitinating enzyme, cause microcephaly-capillary malformation syndrome. Nat Genet 45:556-562 (2013).
25.
Morris Z, Whiteley WN, Longstreth WT Jr, Weber F, Lee YC, et al: Incidental findings on brain magnetic resonance imaging: systematic review and meta-analysis. BMJ 339:b3016 (2009).
26.
Neveling K, Martinez-Carrera LA, Hölker I, Heister A, Verrips A, et al: Mutations in BICD2, which encodes a golgin and important motor adaptor, cause congenital autosomal-dominant spinal muscular atrophy. Am J Hum Genet 92:946-954 (2013).
27.
Otten P, Pizzolato GP, Rilliet B, Berney J: 131 cases of cavernous angioma (cavernomas) of the CNS, discovered by retrospective analysis of 24, 535 autopsies (in French). Neurochirurgie 35:82-83 (1989).
28.
Robinson JR, Awad IA, Little JR: Natural history of the cavernous angioma. J Neurosurg 75:709-714 (1991).
29.
Rossi A, Kontarakis Z, Gerri C, Nolte H, Hölper S, et al: Genetic compensation induced by deleterious mutations but not gene knockdowns. Nature 524:230-233 (2015).
30.
Schleider E, Stahl S, Wüstehube J, Walter U, Fischer A, Felbor U: Evidence for anti-angiogenic and pro-survival functions of the cerebral cavernous malformation protein 3. Neurogenetics 12:83-86 (2011).
31.
Schröder W, Najm J, Spiegler S, Mair M, Viera J, et al: Predictive genetic testing of at-risk relatives requires analysis of all CCM genes after identification of an unclassified CCM1 variant in an individual affected with cerebral cavernous malformations. Neurosurg Rev 37:161-165 (2014).
32.
Shenkar R, Shi C, Rebeiz T, Stockton RA, McDonald DA, et al: Exceptional aggressiveness of cerebral cavernous malformation disease associated with PDCD10 mutations. Genet Med 17:188-196 (2015).
33.
Spiegler S, Najm J, Liu J, Gkalympoudis S, Schröder W, et al: High mutation detection rates in cerebral cavernous malformation upon stringent inclusion criteria: one-third of probands are minors. Mol Genet Genomic Med 2:176-185 (2014).
34.
Stahl S, Gaetzner S, Voss K, Brackertz B, Schleider E, et al: Novel CCM1, CCM2, and CCM3 mutations in patients with cerebral cavernous malformations: in-frame deletion in CCM2 prevents formation of a CCM1/CCM2/CCM3 protein complex. Hum Mutat 29:709-717 (2008).
35.
Stainier DY, Fouquet B, Chen JN, Warren KS, Weinstein BM, et al: Mutations affecting the formation and function of the cardiovascular system in the zebrafish embryo. Development 123:285-292 (1996).
36.
Tsang HT, Connell JW, Brown SE, Thompson A, Reid E, Sanderson CM: A systematic analysis of human CHMP protein interactions: additional MIT domain-containing proteins bind to multiple components of the human ESCRT III complex. Genomics 88:333-346 (2006).
37.
van Impel A, Zhao Z, Hermkens DM, Roukens MG, Fischer JC, et al: Divergence of zebrafish and mouse lymphatic cell fate specification pathways. Development 141:1228-1238 (2014).
38.
Voss K, Stahl S, Hogan BM, Reinders J, Schleider E, et al: Functional analyses of human and zebrafish 18-amino acid in-frame deletion pave the way for domain mapping of the cerebral cavernous malformation 3 protein. Hum Mutat 30:1003-1011 (2009).
39.
Wüstehube J, Bartol A, Liebler SS, Brütsch R, Zhu Y, et al: Cerebral cavernous malformation protein CCM1 inhibits sprouting angiogenesis by activating DELTA-NOTCH signaling. Proc Natl Acad Sci USA 107:12640-12645 (2010).
40.
You C, Sandalcioglu IE, Dammann P, Felbor U, Sure U, Zuh Y: Loss of CCM3 impairs DLL4-Notch signalling: implication in endothelial angiogenesis and in inherited cerebral cavernous malformations. J Cell Mol Med 17:407-418 (2013).
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.