Coenzyme Q (CoQ) is a mitochondrial lipid, which functions mainly as an electron carrier from complex I or II to complex III at the mitochondrial inner membrane, and also as antioxidant in cell membranes. CoQ is needed as electron acceptor in β-oxidation of fatty acids and pyridine nucleotide biosynthesis, and it is responsible for opening the mitochondrial permeability transition pore. The yeast model has been very useful to analyze the synthesis of CoQ, and therefore, most of the knowledge about its regulation was obtained from the Saccharomyces cerevisiae model. CoQ biosynthesis is regulated to support 2 processes: the bioenergetic metabolism and the antioxidant defense. Alterations of the carbon source in yeast, or in nutrient availability in yeasts or mammalian cells, upregulate genes encoding proteins involved in CoQ synthesis. Oxidative stress, generated by chemical or physical agents or by serum deprivation, modifies specifically the expression of some COQ genes by means of stress transcription factors such as Msn2/4p, Yap1p or Hsf1p. In general, the induction of COQ gene expression produced by metabolic changes or stress is modulated downstream by other regulatory mechanisms such as the protein import to mitochondria, the assembly of a multi-enzymatic complex composed by Coq proteins and also the existence of a phosphorylation cycle that regulates the last steps of CoQ biosynthesis. The CoQ biosynthetic complex assembly starts with the production of a nucleating lipid such as HHB by the action of the Coq2 protein. Then, the Coq4 protein recognizes the precursor HHB acting as the nucleus of the complex. The activity of Coq8p, probably as kinase, allows the formation of an initial pre-complex containing all Coq proteins with the exception of Coq7p. This pre-complex leads to the synthesis of 5-demethoxy-Q6 (DMQ6), the Coq7p substrate. When de novo CoQ biosynthesis is required, Coq7p becomes dephosphorylated by the action of Ptc7p increasing the synthesis rate of CoQ6. This critical model is needed for a better understanding of CoQ biosynthesis. Taking into account that patients with CoQ10 deficiency maintain to some extent the machinery to synthesize CoQ, new promising strategies for the treatment of CoQ10 deficiency will require a better understanding of the regulation of CoQ biosynthesis in the future.

1.
Abdulrehman D, Monteiro PT, Teixeira MC, Mira NP, Lourenço AB, et al: YEASTRACT: providing a programmatic access to curated transcriptional regulatory associations in Saccharomyces cerevisiae through a web services interface. Nucleic Acids Res 39:D136-D140 (2011).
2.
Antonenkov VD, Grunau S, Ohlmeier S, Hiltunen JK: Peroxisomes are oxidative organelles. Antioxid Redox Signal 13:525-537 (2010).
3.
Arlt H, Steglich G, Perryman R, Guiard B, Neupert W, Langer T: The formation of respiratory chain complexes in mitochondria is under the proteolytic control of the m-AAA protease. EMBO J 17:4837-4847 (1998).
4.
Arroyo BA, Villalba JMJM, Arroyo A, Rodríguez-Aguilera JCJ, Santos-Ocaña C, Navas P: Stabilization of extracellular ascorbate mediated by coenzyme Q transmembrane electron transport. Methods Enzymol 378:207-217 (2004).
5.
Artuch R, Brea-Calvo G, Briones P, Aracil A, Galvan M, et al: Cerebellar ataxia with coenzyme Q10 deficiency: diagnosis and follow-up after coenzyme Q10 supplementation. J Neurol Sci 246:153-158 (2006).
6.
Aure K, Benoist JF, Ogier de Baulny H, Romero NB, Rigal O, Lombes A: Progression despite replacement of a myopathic form of coenzyme Q10 defect. Neurology 63:727-729 (2004).
7.
Baba SW, Belogrudov GI, Lee JC, Lee PT, Strahan J, et al: Yeast Coq5 C-methyltransferase is required for stability of other polypeptides involved in coenzyme Q biosynthesis. J Biol Chem 279:10052-10059 (2004).
8.
Barroso MP, Gomez-Diaz C, Villalba JM, Buron MI, Lopez-Lluch G, Navas P: Plasma membrane ubiquinone controls ceramide production and prevents cell death induced by serum withdrawal. J Bioenerg Biomembr 29:259-267 (1997).
9.
Battino M, Bompadre S, Leone L, Devecchi E, Degiuli A, et al: Coenzyme Q, vitamin E and Apo-E alleles in Alzheimer disease. Biofactors 18:277-281 (2003).
10.
Becker C, Bray-French K, Drewe J: Pharmacokinetic evaluation of idebenone. Expert Opin Drug Metab Toxicol 6:1437-1444 (2010).
11.
Belogrudov GI, Lee PT, Jonassen T, Hsu AY, Gin P, Clarke CF: Yeast COQ4 encodes a mitochondrial protein required for coenzyme Q synthesis. Arch Biochem Biophys 392:48-58 (2001).
12.
Bentinger M, Turunen M, Zhang XX, Wan YJ, Dallner G: Involvement of retinoid X receptor alpha in coenzyme Q metabolism. J Mol Biol 326:795-803 (2003).
13.
Bentinger M, Brismar K, Dallner G: The antioxidant role of coenzyme Q. Mitochondrion 7(suppl):S41-S50 (2007).
14.
Bentinger M, Tekle M, Brismar K, Chojnacki T, Swiezewska E, Dallner G: Polyisoprenoid epoxides stimulate the biosynthesis of coenzyme Q and inhibit cholesterol synthesis. J Biol Chem 283:14645-14653 (2008a).
15.
Bentinger M, Tekle M, Brismar K, Chojnacki T, Swiezewska E, Dallner G: Stimulation of coenzyme Q synthesis. Biofactors 32:99-111 (2008b).
16.
Berry DB, Gasch AP: Stress-activated genomic expression changes serve a preparative role for impending stress in yeast. Mol Biol Cell 19:4580-4587 (2008).
17.
Beyer RE: The role of ascorbate in antioxidant protection of biomembranes: interaction with vitamin E and coenzyme Q. J Bioenerg Biomembr 26:349-358 (1994).
18.
Brea-Calvo G, Rodríguez-Hernández A, Fernández-Ayala DJ, Navas P, Sánchez-Alcázar JA: Chemotherapy induces an increase in coenzyme Q10 levels in cancer cell lines. Free Radic Biol Med 40:1293-1302 (2006).
19.
Brea-Calvo G, Siendones E, Sanchez-Alcazar JA, de Cabo R, Navas P: Cell survival from chemotherapy depends on NF-kappaB transcriptional up-regulation of coenzyme Q biosynthesis. PLoS One 4:e5301 (2009).
20.
Casarin A, Jimenez-Ortega JC, Trevisson E, Pertegato V, Doimo M, et al: Functional characterization of human COQ4, a gene required for coenzyme Q10 biosynthesis. Biochem Biophys Res Commun 372:35-39 (2008).
21.
Civitarese AE, Carling S, Heilbronn LK, Hulver MH, Ukropcova B, et al: Calorie restriction increases muscle mitochondrial biogenesis in healthy humans. PLoS Med 4:e76 (2007).
22.
Claros MG, Vincens P: Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur J Biochem 241:779-786 (1996).
23.
Crane FL: Discovery of ubiquinone (coenzyme Q) and an overview of function. Mitochondrion 7(suppl):S2-S7 (2007).
24.
Crane FL, Hatefi Y, Lester RL, Widmer C: Isolation of a quinone from beef heart mitochondria. Biochim Biophys Acta 25:220-221 (1957).
25.
DeRisi JL, Iyer VR, Brown PO: Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278:680-686 (1997).
26.
DiMauro S: Mitochondrial myopathies. Curr Opin Rheumatol 18:636-641 (2006).
27.
Do TQ, Schultz JR, Clarke CF: Enhanced sensitivity of ubiquinone-deficient mutants of Saccharomyces cerevisiae to products of autoxidized polyunsaturated fatty acids. Proc Natl Acad Sci USA 93:7534-7539 (1996).
28.
Duncan AJ, Bitner-Glindzicz M, Meunier B, Costello H, Hargreaves IP, et al: A nonsense mutation in COQ9 causes autosomal-recessive neonatal-onset primary coenzyme Q10 deficiency: a potentially treatable form of mitochondrial disease. Am J Hum Genet 84:558-566 (2009).
29.
Eastmond DL, Nelson HC: Genome-wide analysis reveals new roles for the activation domains of the Saccharomyces cerevisiae heat shock transcription factor (Hsf1) during the transient heat shock response. J Biol Chem 281:32909-32921 (2006).
30.
Echtay KS, Winkler E, Klingenberg M: Coenzyme Q is an obligatory cofactor for uncoupling protein function. Nature 408:609-613 (2000).
31.
Fernández-Ayala DJ, Martín SF, Barroso MP, Gómez-Díaz C, Villalba JM, et al: Coenzyme Q protects cells against serum withdrawal-induced apoptosis by inhibition of ceramide release and caspase-3 activation. Antioxid Redox Signal 2:263-275 (2000).
32.
Fernandez-Ayala DJ, Brea-Calvo G, Lopez-Lluch G, Navas P: Coenzyme Q distribution in HL-60 human cells depends on the endomembrane system. Biochim Biophys Acta 1713:129-137 (2005).
33.
Fontaine E, Bernardi P: Progress on the mitochondrial permeability transition pore: regulation by complex I and ubiquinone analogs. J Bioenerg Biomembr 31:335-345 (1999).
34.
Fontaine E, Ichas F, Bernardi P: A ubiquinone-binding site regulates the mitochondrial permeability transition pore. J Biol Chem 273:25734-25740 (1998).
35.
Frei B, Kim MC, Ames BN: Ubiquinol-10 is an effective lipid-soluble antioxidant at physiological concentrations. Proc Natl Acad Sci USA 87:4879-4883 (1990).
36.
Frerman FE: Acyl-CoA dehydrogenases, electron transfer flavoprotein and electron transfer flavoprotein dehydrogenase. Biochem Soc Trans 16:416-418 (1988).
37.
Gancedo JM: Yeast carbon catabolite repression. Microbiol Mol Biol Rev 62:334-361 (1998).
38.
Gibson F, Young IG: Isolation and characterization of intermediates in ubiquinone biosynthesis. Methods Enzymol 53:600-609 (1978).
39.
Gin P, Clarke CF: Genetic evidence for a multi-subunit complex in coenzyme Q biosynthesis in yeast and the role of the Coq1 hexaprenyl diphosphate synthase. J Biol Chem 280:2676-2681 (2005).
40.
Gin P, Hsu AY, Rothman SC, Jonassen T, Lee PT, et al: The Saccharomyces cerevisiaeCOQ6 gene encodes a mitochondrial flavin-dependent monooxygenase required for coenzyme Q biosynthesis. J Biol Chem 278:25308-25316 (2003).
41.
Goewert RR, Sippel CJ, Olson RE: Identification of 3,4-dihydroxy-5-hexaprenylbenzoic acid as an intermediate in the biosynthesis of ubiquinone-6 by Saccharomyces cerevisiae. Biochemistry 20:4217-4223 (1981).
42.
Gómez-Díaz C, Rodríguez-Aguilera JC, Barroso MP, Villalba JM, Navarro F, et al: Antioxidant ascorbate is stabilized by NADH-coenzyme Q10 reductase in the plasma membrane. J Bioenerg Biomembr 29:251-257 (1997a).
43.
Gómez-Díaz C, Villalba JM, Pérez-Vicente R, Crane FL, Navas P: Ascorbate stabilization is stimulated in rho(0)HL-60 cells by CoQ10 increase at the plasma membrane. Biochem Biophys Res Commun 234:79-81 (1997b).
44.
Gorman A, McGowan A, Cotter TG: Role of peroxide and superoxide anion during tumour cell apoptosis. FEBS Lett 404:27-33 (1997).
45.
Hagerman RA, Willis RA: The yeast gene COQ5 is differentially regulated by Mig1p, Rtg3p and Hap2p. Biochim Biophys Acta 1578:51-58 (2002).
46.
Hagerman RA, Trotter PJ, Willis RA: The regulation of COQ5 gene expression by energy source. Free Radic Res 36:485-490 (2002).
47.
Harbison CT, Gordon DB, Lee TI, Rinaldi NJ, Macisaac KD, et al: Transcriptional regulatory code of a eukaryotic genome. Nature 431:99-104 (2004).
48.
Heeringa SF, Chernin G, Chaki M, Zhou W, Sloan AJ, et al: COQ6 mutations in human patients produce nephrotic syndrome with sensorineural deafness. J Clin Invest 121:2013-2024 (2011).
49.
Hickman MJ, Winston F: Heme levels switch the function of Hap1 of Saccharomyces cerevisiae between transcriptional activator and transcriptional repressor. Mol Cell Biol 27:7414-7424 (2007).
50.
Hiltunen JK, Mursula AM, Rottensteiner H, Wierenga RK, Kastaniotis AJ, Gurvitz A: The biochemistry of peroxisomal β-oxidation in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 27:35-64 (2003).
51.
Hsieh EEJ, Gin P, Gulmezian M, Tran UC, Saiki R, et al: Saccharomyces cerevisiae Coq9 polypeptide is a subunit of the mitochondrial coenzyme Q biosynthetic complex. Arch Biochem Biophys 463:19-26 (2007).
52.
Hsu AY, Do TQ, Lee PT, Clarke CF: Genetic evidence for a multi-subunit complex in the O-methyltransferase steps of coenzyme Q biosynthesis. Biochem Biophys Acta 1484:287-297 (2000).
53.
Ingrell CR, Miller ML, Jensen ON, Blom N: NetPhosYeast: prediction of protein phosphorylation sites in yeast. Bioinformatics 23:895-897 (2007).
54.
Johnson A, Gin P, Marbois BN, Hsieh EJ, Wu M, et al: COQ9, a new gene required for the biosynthesis of coenzyme Q in Saccharomyces cerevisiae. J Biol Chem 280:31397-31404 (2005).
55.
Jones ME: Pyrimidine nucleotide biosynthesis in animals: genes, enzymes, and regulation of UMP biosynthesis. Annu Rev Biochem 49:253-279 (1980).
56.
Kagan VE, Tyurina YY, Witt E: Role of coenzyme Q and superoxide in vitamin E cycling. Subcell Biochem 30:491-507 (1998).
57.
Kamzalov S, Sohal RS: Effect of age and caloric restriction on coenzyme Q and alpha-tocopherol levels in the rat. Exp Gerontol 39:1199-1205 (2004).
58.
Kuznetsov AV, Smigelskaite J, Doblander C, Janakiraman M, Hermann M, et al: Survival signaling by C-RAF: mitochondrial reactive oxygen species and Ca2+ are critical targets. Mol Cell Biol 28:2304-2313 (2008).
59.
Kuznetsov AV, Kehrer I, Kozlov AV, Haller M, Redl H, et al: Mitochondrial ROS production under cellular stress: comparison of different detection methods. Anal Bioanal Chem 400:2383-2390 (2011).
60.
Lagier-Tourenne C, Tazir M: ADCK3, an ancestral kinase, is mutated in a form of recessive ataxia associated with coenzyme Q10 deficiency. Am J Hum Genet 82:661-672 (2008).
61.
Lai L, Kosorukoff AL, Burke PV, Kwast KE: Dynamical remodeling of the transcriptome during short-term anaerobiosis in Saccharomyces cerevisiae: differential response and role of Msn2 and/or Msn4 and other factors in galactose and glucose media. Mol Cell Biol 25:4075-4091 (2005).
62.
Lamperti C, Naini A, Hirano M, De Vivo DC, Bertini E, et al: Cerebellar ataxia and coenzyme Q10 deficiency. Neurology 60:1206-1208 (2003).
63.
Lass A, Forster MJ, Sohal RS: Effects of coenzyme Q10 and alpha-tocopherol administration on their tissue levels in the mouse: elevation of mitochondrial alpha-tocopherol by coenzyme Q10. Free Radic Biol Med 26:1375-1382 (1999).
64.
Lin S, Kaeberlein M, Andalis A, Sturtz L, Defossez PA, et al: Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration. Nature 418: 344-348 (2002).
65.
Lopez LC, Schuelke M, Quinzii CM, Kanki T, Rodenburg RJ, et al: Leigh syndrome with nephropathy and CoQ10 deficiency due to decaprenyl diphosphate synthase subunit 2 (PDSS2) mutations. Am J Hum Genet 79:1125-1129 (2006).
66.
Lopez-Lluch G, Hunt N, Jones B, Zhu M, Jamieson H, et al: Calorie restriction induces mitochondrial biogenesis and bioenergetic efficiency. Proc Natl Acad Sci USA 103:1768-1773 (2006).
67.
López-Martín JM, Salviati L, Trevisson E, Montini G, DiMauro S, et al: Missense mutation of the COQ2 gene causes defects of bioenergetics and de novo pyrimidine synthesis. Hum Mol Genet 16:1091-1097 (2007).
68.
Mancuso M, Choub A, Filosto M, Petrozzi L, Cafforio G, et al: Coenzyme Q10 and neurological diseases: an update. Lett Drug Des Discov 3:378-382 (2006).
69.
Marbois B, Gin P, Faull KF, Poon WW, Lee PT, et al: Coq3 and Coq4 define a polypeptide complex in yeast mitochondria for the biosynthesis of coenzyme Q. J Biol Chem 280:20231-20238 (2005).
70.
Marbois B, Gin P, Gulmezian M, Clarke CF: The yeast Coq4 polypeptide organizes a mitochondrial protein complex essential for coenzyme Q biosynthesis. Biochim Biophys 1791:69-75 (2009).
71.
Martin-Montalvo A, Gonzalez-Mariscal I, Padilla S, Ballesteros M, Brautigan DL, et al: Respiratory-induced coenzyme Q biosynthesis is regulated by a phosphorylation cycle of Cat5p/Coq7p. Biochem J 114:107-114 (2011).
72.
Martin-Montalvo A, Gonzalez-Mariscal I, Pomares-Viciana T, Padilla-Lopez S, Ballesteros M, et al: The phosphatase Ptc7 induces coenzyme Q biosynthesis by activating the hydroxylase Coq7 in yeast. J Biol Chem 288:28126-28137 (2013).
73.
Meier T, Buyse G: Idebenone: an emerging therapy for Friedreich ataxia. J Neurol 256(suppl):25-30 (2009).
74.
Mitchell P: Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191:144-148 (1961).
75.
Mollet J, Delahodde A, Serre V, Chretien D, Schlemmer D, et al: CABC1 gene mutations cause ubiquinone deficiency with cerebellar ataxia and seizures. Am J Hum Genet 82:623-630 (2008).
76.
Monteiro PT, Mendes ND, Teixeira MC, d'Orey S, Tenreiro S, et al: YEASTRACT-DISCOVERER: new tools to improve the analysis of transcriptional regulatory associations in Saccharomyces cerevisiae. Nucleic Acids Res 36:D132-136 (2008).
77.
Moxley JF, Jewett MC, Antoniewicz MR, Villas-Boas SG, Alper H, et al: Linking high-resolution metabolic flux phenotypes and transcriptional regulation in yeast modulated by the global regulator Gcn4p. Proc Natl Acad Sci USA 106:6477-6482 (2009).
78.
Musumeci O, Naini A, Slonim AE, Skavin N, Hadjigeorgiou GL, et al: Familial cerebellar ataxia with muscle coenzyme Q10 deficiency. Neurology 56:849-855 (2001).
79.
Nagy M, Lacroute F, Thomas D: Divergent evolution of pyrimidine biosynthesis between anaerobic and aerobic yeasts. Proc Natl Acad Sci USA 89:8966-8970 (1992).
80.
Navas P, Fernandez-Ayala DM, Martin SF, Lopez-Lluch G, De Caboa R, et al: Ceramide-dependent caspase 3 activation is prevented by coenzyme Q from plasma membrane in serum-deprived cells. Free Radic Res 36:369-374 (2002).
81.
Ocampo A, Liu J, Schroeder EA, Shadel GSS, Barrientos A: Mitochondrial respiratory thresholds regulate yeast chronological life span and its extension by caloric restriction. Cell Metab 16:55-67 (2012).
82.
Ogasahara S, Engel AG, Frens D, Mack D: Muscle coenzyme Q deficiency in familial mitochondrial encephalomyopathy. Proc Natl Acad Sci USA 86:2379-2382 (1989).
83.
Ozeir M, Mühlenhoff U, Webert H, Lill R, Fontecave M, Pierrel F: Coenzyme Q biosynthesis: Coq6 is required for the C5-hydroxylation reaction and substrate analogs rescue Coq6 deficiency. Chem Biol 18:1134-1142 (2011).
84.
Padilla S, Jonassen T, Jiménez-Hidalgo M, Fernández-Ayala DJM, López-Lluch G, et al: Demethoxy-Q, an intermediate of coenzyme Q biosynthesis, fails to support respiration in Saccharomyces cerevisiae and lacks antioxidant activity. J Biol Chem 279:25995-26004 (2004).
85.
Padilla S, Tran UC, Jiménez-Hidalgo M, López-Martín JM, Martín-Montalvo A, et al: Hydroxylation of demethoxy-Q6 constitutes a control point in yeast coenzyme Q6 biosynthesis. Cell Mol Life Sci 66:173-186 (2009).
86.
Padilla-López S, Jiménez-Hidalgo M, Martín-Montalvo A, Clarke CF, Navas P, et al: Genetic evidence for the requirement of the endocytic pathway in the uptake of coenzyme Q6 in Saccharomyces cerevisiae. Biochim Biophys Acta 1788:1238-1248 (2009).
87.
Pedruzzi I, Bürckert N, Egger P, De Virgilio C: Saccharomyces cerevisiae Ras/cAMP pathway controls post-diauxic shift element-dependent transcription through the zinc finger protein Gis1. EMBO J 19:2569-2579 (2000).
88.
Plecita-Hlavata L, Jezek J, Jezek P: Pro-oxidant mitochondrial matrix-targeted ubiquinone MitoQ10 acts as anti-oxidant at retarded electron transport or proton pumping within complex I. Int J Biochem Cell Biol 41:1697-1707 (2009).
89.
Poon WW, Marbois BN, Faull KF, Clarke CF: 3-Hexaprenyl-4-hydrobenzoic acid forms a predominant intermediate pool in ubiquinone biosynthesis in Saccharomyces cerevisiae. Arch Biochem Biophys 320:305-314 (1995).
90.
Poon WW, Do TQ, Marbois BN, Clarke CF: Sensitivity to treatment with polyunsaturated fatty acids is a general characteristic of the ubiquinone-deficient yeast coq mutants. Mol Aspects Med 18 Suppl:S121-127 (1997).
91.
Quinzii CM, Kattah AG, Naini A, Akman HO, Mootha VK, et al: Coenzyme Q deficiency and cerebellar ataxia associated with an aprataxin mutation. Neurology 64:539-541 (2005).
92.
Quinzii CM, DiMauro S, Hirano M: Human coenzyme Q10 deficiency. Neurochem Res 32:723-727 (2007a).
93.
Quinzii CM, Hirano M, DiMauro S: CoQ10 deficiency diseases in adults. Mitochondrion 7(suppl):S122-S126 (2007b).
94.
Quinzii CM, Lopez LC, Naini A, DiMauro S, Hirano M: Human CoQ10 deficiencies. Biofactors 32:113-118 (2008).
95.
Rotig A, Appelkvist EL, Geromel V, Chretien D, Kadhom N, et al: Quinone-responsive multiple respiratory-chain dysfunction due to widespread coenzyme Q10 deficiency. Lancet 356:391-395 (2000).
96.
Rugarli EI, Langer T: Mitochondrial quality control: a matter of life and death for neurons. EMBO J 31:1336-1349 (2012).
97.
Sakumoto N, Mukai Y, Uchida K, Kouchi T, Kuwajima J, et al: A series of protein phosphatase gene disruptants in Saccharomyces cerevisiae. Yeast 15:1669-1679 (1999).
98.
Salviati L, Sacconi S, Murer L, Zacchello G, Franceschini L, et al: Infantile encephalomyopathy and nephropathy with CoQ10 deficiency: a CoQ10-responsive condition. Neurology 65:606-608 (2005).
99.
Salviati L, Trevisson E, Rodriguez Hernandez MA, Casarin A, Pertegato V, et al: Haploinsufficiency of COQ4 causes coenzyme Q10 deficiency. J Med Genet 49:187-191 (2012).
100.
Santangelo GM: Glucose signaling in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 70:253-282 (2006).
101.
Santos-Ocaña C, Navas P, Crane FL, Córdoba F: Extracellular ascorbate stabilization as a result of transplasma electron transfer in Saccharomyces cerevisiae. J Bioenerg Biomembr 27:597-603 (1995).
102.
Santos-Ocaña C, Córdoba F, Crane FL, Clarke CF, Navas P: Coenzyme Q6 and iron reduction are responsible for the extracellular ascorbate stabilization at the plasma membrane of Saccharomyces cerevisiae. J Biol Chem 273:8099-8105 (1998).
103.
Schultz JR, Clarke CF: Characterization of Saccharomyces cerevisiae ubiquinone-deficient mutants. Biofactors 9:121-129 (1999).
104.
Shults CW, Oakes D, Kieburtz K, Beal MF, Haas R, et al: Effects of coenzyme Q10 in early Parkinson disease: evidence of slowing of the functional decline. Arch Neurol 59:1541-1550 (2002).
105.
Sippel CJ, Goewert RR, Slachman FN, Olson RE: The regulation of ubiquinone-6 biosynthesis by Saccharomyces cerevisiae. J Biol Chem 258:1057-1061 (1983).
106.
Smith RAJ, Murphy MP: Animal and human studies with the mitochondria-targeted antioxidant MitoQ. Ann NY Acad Sci 1201:96-103 (2010).
107.
Stack EC, Matson WR, Ferrante RJ: Evidence of oxidant damage in Huntington's disease: translational strategies using antioxidants. Ann NY Acad Sci 1147:79-92 (2008).
108.
Staschke KA, Dey S, Zaborske JM, Palam LR, McClintick JN, et al: Integration of general amino acid control and target of rapamycin (TOR) regulatory pathways in nitrogen assimilation in yeast. J Biol Chem 285:16893-16911 (2010).
109.
Tauche A, Krause-Buchholz U, Rödel G: Ubiquinone biosynthesis in Saccharomyces cerevisiae: the molecular organization of O-methylase Coq3p depends on Abc1p/Coq8p. FEMS Yeast Res 8:1263-1275 (2008).
110.
Tauskela JS: MitoQ - a mitochondria-targeted antioxidant. IDrugs 10:399-412 (2007).
111.
Thorsen M, Lagniel G, Kristiansson E, Junot C, Nerman O, et al: Quantitative transcriptome, proteome, and sulfur metabolite profiling of the Saccharomyces cerevisiae response to arsenite. Physiol Genomics 30:35-43 (2007).
112.
Tran UC, Marbois B, Gin P, Gulmezian M, Jonassen T, Clarke CF: Complementation of Saccharomyces cerevisiaecoq7 mutants by mitochondrial targeting of the Escherichia coli UbiF polypeptide: two functions of yeast Coq7 polypeptide in coenzyme Q biosynthesis. J Biol Chem 281:16401-16409 (2006).
113.
Troyano A, Fernández C, Sancho P, de Blas E, Aller P: Effect of glutathione depletion on antitumor drug toxicity (apoptosis and necrosis) in U-937 human promonocytic cells. The role of intracellular oxidation. J Biol Chem 276:47107-47115 (2001).
114.
Turunen M, Olsson J, Dallner G: Metabolism and function of coenzyme Q. Biochim Biophys Acta 1660:171-199 (2004).
115.
Walter L, Nogueira V, Leverve X, Heitz MP, Bernardi P, Fontaine E: Three classes of ubiquinone analogs regulate the mitochondrial permeability transition pore through a common site. J Biol Chem 275:29521-29527 (2000).
116.
Xie LX, Hsieh EJ, Watanabe S, Allan CM, Chen JY, et al: Expression of the human atypical kinase ADCK3 rescues coenzyme Q biosynthesis and phosphorylation of Coq polypeptides in yeast coq8 mutants. Biochim Biophys Acta 1811:348-360 (2011).
117.
Xie LX, Ozeir M, Tang JY, Chen JY, Jaquinod SK, et al: Over-expression of the Coq8 kinase in Saccharomyces cerevisiae coq null mutants allows for accumulation of diagnostic intermediates of the coenzyme Q6 biosynthetic pathway. J Biol Chem 287:23571-23581 (2012).
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.