Recent genomic research into autism spectrum disorders (ASD) has revealed a remarkably complex genetic architecture. Large numbers of common variants, copy number variations and single nucleotide variants have been identified, yet each of them individually afforded only a small phenotypic impact. A polygenic model in which multiple genes interact either in an additive or a synergistic way appears the most plausible for the majority of ASD patients. Based on recently identified ASD candidate genes, transgenic mouse models for neuroligins/neurorexins and genes such as Cntnap2,Cntn5, Tsc1, Tsc2, Akt3, Cyfip1, Scn1a, En2, Slc6a4, and Bckdk have been generated and studied with respect to behavioral and neuroanatomical phenotypes and sensitivity to drug treatments. From these models, a few clues for potential pharmacologic intervention emerged. The Fmr1,Shank2 and Cntn5 knockout mice exhibited alterations of glutamate receptors, which may become a target for pharmacologic modulation. Some of the phenotypes of Mecp2 knockout mice can be ameliorated by administering IGF1. In the near future, comprehensive genotyping of individual patients and siblings combined with the novel insights generated from the transgenic animal studies may provide us with personalized treatment options. Eventually, autism may indeed turn out to be a phenotypically heterogeneous group of disorders (‘autisms') caused by combinations of changes in multiple possible candidate genes, being different in each patient and requiring for each combination of mutations a distinct, individually tailored treatment.

1.
Abrahams BS, Geschwind DH: Advances in autism genetics: on the threshold of a new neurobiology. Nat Rev Genet 9:341-355 (2008).
2.
American Psychiatric Association: Diagnostic and Statistical Manual of Mental Disorders (American Psychatric Publishing, Arlington 2000).
3.
Anney R, Klei L, Pinto D, Almeida J, Bacchelli E, et al: Individual common variants exert weak effects on the risk for autism spectrum disorders. Hum Mol Genet 21:4781-4792 (2012).
4.
Autism Genome Project Consortium, Szatmari P, Paterson AD, Zwaigenbaum L, Roberts W, et al: Mapping autism risk loci using genetic linkage and chromosomal rearrangements. Nat Genet 39:319-328 (2007).
5.
Bailey A, Le Couteur A, Gottesman I, Bolton P, Simonoff E, et al: Autism as a strongly genetic disorder: evidence from a British twin study. Psychol Med 25:63-77 (1995).
6.
Baudouin SJ, Gaudias J, Gerharz S, Hatstatt L, Zhou K, et al: Shared synaptic pathophysiology in syndromic and nonsyndromic rodent models of autism. Science 338:128-132 (2012).
7.
Blundell J, Tabuchi K, Bolliger MF, Blaiss CA, Brose N, et al: Increased anxiety-like behavior in mice lacking the inhibitory synapse cell adhesion molecule neuroligin 2. Genes Brain Behav 8:114-126 (2009).
8.
Blundell J, Blaiss CA, Etherton MR, Espinosa F, Tabuchi K, et al: Neuroligin-1 deletion results in impaired spatial memory and increased repetitive behavior. J Neurosci 30:2115-2129 (2010).
9.
Bozdagi O, Sakurai T, Dorr N, Pilorge M, Takahashi N, Buxbaum JD: Haploinsufficiency of Cyfip1 produces fragile X-Like phenotypes in mice. PLoS One 7:e.42422 (2012).
10.
Brielmaier J, Matteson PG, Silverman JL, Senerth JM, Kelly S, et al: Autism-relevant social abnormalities and cognitive deficits in engrailed-2 knockout mice. PLoS One 7:e40914 (2012).
11.
Bucan M, Abrahams BS, Wang K, Glessner JT, Herman EI, et al.: Genome-wide analyses of exonic copy number variants in a family-based study point to novel autism susceptibility genes. PLoS Genet 5:e1000536 (2009).
12.
Buizer-Voskamp JE, Laan W, Staal WG, Hennekam EA, Aukes MF, et al: Paternal age and psychiatric disorders: findings from a Dutch population registry. Schizophr Res 129:128-132 (2011).
13.
Chadman KK, Yang M, Crawley JN: Criteria for validating mouse models of psychiatric diseases. Am J Med Genet B Neuropsychiatr Genet 150B:1-11 (2009).
14.
Chen RZ, Akbarian S, Tudor M, Jaenisch R: Deficiency of methyl-CpG binding protein-2 in CNS neurons results in a Rett-like phenotype in mice. Nat Genet 27:327-331 (2001).
15.
Cook EH Jr, Scherer SW: Copy-number variations associated with neuropsychiatric conditions. Nature 455:919-923 (2008).
16.
Cuscó I, Medrano A, Gener B, Vilardell M, Gallastegui F, et al: Autism-specific copy number variants further implicate the phosphatidylinositol signaling pathway and the glutamatergic synapse in the etiology of the disorder. Hum Mol Genet 18:1795-1804 (2009).
17.
Devlin B, Scherer SW: Genetic architecture in autism spectrum disorder. Curr Opin Genet Dev 22:229-237 (2012).
18.
Devys D, Lutz Y, Rouyer N, Bellocq JP, Mandel JL: The FMR-1 protein is cytoplasmic, most abundant in neurons and appears normal in carriers of a fragile X premutation. Nat Genet 4:335-340 (1993).
19.
El-Kordi A, Winkler D, Hammerschmidt K, Kästner A, Krueger D, et al: Development of an autism severity score for mice using Nlgn4 null mutants as a construct-valid model of heritable monogenic autism. Behav Brain Res pii: S0166-4328(12)00738-3 (2012).
20.
Etherton MR, Tabuchi K, Sharma M, Ko J, Südhof TC: An autism-associated point mutation in the neuroligin cytoplasmic tail selectively impairs AMPA receptor-mediated synaptic transmission in hippocampus. EMBO J 30:2908-2919 (2011a).
21.
Etherton M, Földy C, Sharma M, Tabuchi K, Liu X, et al: Autism-linked neuroligin-3 R451C mutation differentially alters hippocampal and cortical synaptic function. Proc Natl Acad Sci USA 108:13764-13769 (2011b).
22.
Fombonne E: A wrinkle in time: from early signs to a diagnosis of autism. J Am Acad Child Adolesc Psychiatry 48:463-464 (2009).
23.
Freitag CM: The genetics of autistic disorders and its clinical relevance: a review of the literature. Mol Psychiatry 12:2-22 (2007).
24.
Gillberg C, Coleman M: Autism and medical disorders: a review of the literature. Dev Med Child Neurol 38:191-202 (1996).
25.
Girirajan S, Eichler EE: Phenotypic variability and genetic susceptibility to genomic disorders. Hum Mol Genet 19:R176-187 (2010).
26.
Girirajan S, Rosenfeld JA, Coe BP, Parikh S, Friedman N, et al: Phenotypic heterogeneity of genomic disorders and rare copy-number variants. N Engl J Med 367:1321-1331 (2012).
27.
Gkogkas CG, Khoutorsky A, Ran I, Rampakakis E, Nevarko T, et al: Autism-related deficits via dysregulated eIF4E-dependent translational control. Nature 493:371-377 (2013).
28.
Glessner JT, Wang K, Cai G, Korvatska O, Kim CE, et al: Autism genome-wide copy number variation reveals ubiquitin and neuronal genes. Nature 459:569-573 (2009).
29.
Hallmayer J, Cleveland S, Torres A, Phillips J, Cohen B, et al: Genetic heritability and shared environmental factors among twin pairs with autism. Arch Gen Psychiatry 2011;68:1095-1102.
30.
Han S, Tai C, Westenbroek RE, Yu FH, Cheah CS, et al: Autistic-like behaviour in Scn1a+/- mice and rescue by enhanced GABA-mediated neurotransmission. Nature 489:385-390 (2012).
31.
Hochstenbach R, Buizer-Voskamp JE, Vorstman JA, Ophoff RA: Genome arrays for the detection of copy number variations in idiopathic mental retardation, idiopathic generalized epilepsy and neuropsychiatric disorders: lessons for diagnostic workflow and research. Cytogenet Genome Res 135:174-202 (2011).
32.
Holt R, Barnby G, Maestrini E, Bacchelli E, Brocklebank D, et al: Linkage and candidate gene studies of autism spectrum disorders in European populations. Eur J Hum Genet 18:1013-1019 (2010).
33.
Iossifov I, Ronemus M, Levy D, Wang Z, Hakker I, et al: De novo gene disruptions in children on the autistic spectrum. Neuron 74:285-299 (2012).
34.
Itsara A, Cooper GM, Baker C, Girirajan S, Li J, et al: Population analysis of large copy number variants and hotspots of human genetic disease. Am J Hum Genet 84:148-161 (2009).
35.
Jacquemont ML, Sanlaville D, Redon R, Raoul O, Cormier-Daire V, et al: Array-based comparative genomic hybridisation identifies high frequency of cryptic chromosomal rearrangements in patients with syndromic autism spectrum disorders. J Med Genet 43:843-849 (2006).
36.
Jamain S, Quach H, Betancur C, Råstam M, Colineaux C, et al: Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nat Genet 34:27-29 (2003).
37.
Kong A, Frigge ML, Masson G, Besenbacher S, Sulem P, et al: Rate of de novo mutations and the importance of father's age to disease risk. Nature 488:471-475 (2012).
38.
Leblond CS, Heinrich J, Delorme R, Proepper C, Betancur C, et al: Genetic and functional analyses of SHANK2 mutations suggest a multiple hit model of autism spectrum disorders. PLoS Genet 8:e1002521 (2012).
39.
Le Couteur A, Bailey A, Goode S, Pickles A, Robertson S, et al: A broader phenotype of autism: the clinical spectrum in twins. J Child Psychol and Psychiatry 37:785-801 (1996).
40.
Lee JH, Huynh M, Silhavy JL, Kim S, Dixon-Salazar T, et al: De novo somatic mutations in components of the PI3K-AKT3-mTOR pathway cause hemimegalencephaly. Nat Genet 44:941-945 (2012).
41.
Li H, Takeda Y, Niki H, Ogawa J, Kobayashi S, et al: Aberrant responses to acoustic stimuli in mice deficient for neural recognition molecule NB-2. Eur J Neurosci 17:929-936 (2003).
42.
Li X, Zou H, Brown WT: Genes associated with autism spectrum disorder. Brain Res Bull 88:543-552 (2012).
43.
Liao W, Gandal MJ, Ehrlichman RS, Siegel SJ, Carlson GC: MeCP2+/- mouse model of RTT reproduces auditory phenotypes associated with Rett syndrome and replicate select EEG endophenotypes of autism spectrum disorder. Neurobiol Dis 46:88-92 (2012).
44.
Lim ET, Raychaudhuri S, Sanders SJ, Stevens C, Sabo A, et al: Rare complete knockouts in humans: population distribution and significant role in autism spectrum disorders. Neuron 77:235-242 (2013).
45.
Ma D, Salyakina D, Jaworski JM, Konidari I, Whitehead PL, et al: A genome-wide association study of autism reveals a common novel risk locus at 5p14.1. Ann Hum Genet 73:263-273 (2009).
46.
Magnée MJ, Kahn RS, Cahn W, Kemner C: More prolonged brain activity related to gaze cueing in schizophrenia. Clin Neurophysiol 122:506-511 (2011).
47.
Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, et al: Finding the missing heritability of complex diseases. Nature 461:747-753 (2009).
48.
Marshall CR, Noor A, Vincent JB, Lionel AC, Feuk L, et al: Structural variation of chromosomes in autism spectrum disorder. Am J Hum Genet 82:477-488 (2008).
49.
Neale BM, Kou Y, Liu L, Ma'ayan A, Samocha KE, et al: Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature 485:242-245 (2012).
50.
Nestler EJ, Hyman SE: Animal models of neuropsychiatric disorders. Nat Neurosci 13:1161-1169 (2010).
51.
Newbury DF, Fisher SE, Monaco AP: Recent advances in the genetics of language impairment. Genome Med 2:6 (2010).
52.
Newschaffer CJ, Croen LA, Daniels J, Giarelli E, Grether JK, et al: The epidemiology of autism spectrum disorders. Annu Rev Public Health 28:235-258 (2007).
53.
Nishiyama T, Notohara M, Sumi S, Takami S, Kishino H: Major contribution of dominant inheritance to autism spectrum disorders (ASDs) in population-based families. J Hum Genet 54:721-726 (2009).
54.
Novarino G, El-Fishawy P, Kayserili H, Meguid NA, Scott EM, et al: Mutations in BCKD- kinase lead to a potentially treatable form of autism with epilepsy. Science 338:394-397 (2012).
55.
O'Roak BJ, Vives L, Girirajan S, Karakoc E, Krumm N, et al: Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature 485:246-250 (2012).
56.
Ozgen HM, van Daalen E, Bolton PF, Maloney VK, Huang S, et al: Copy number changes of the microcephalin 1 gene (MCPH1) in patients with autism spectrum disorders. Clin Genet 76:348-356 (2009).
57.
Peñagarikano O, Abrahams BS, Herman EI, Winden KD, Gdalyahu A, et al: Absence of CNTNAP2 leads to epilepsy, neuronal migration abnormalities, and core autism-related deficits. Cell 147:235-246 (2011).
58.
Peñagarikano O, Geschwind DH: What does CNTNAP2 reveal about autism spectrum disorder? Trends Mol Med 18:156-163 (2012).
59.
Pinto D, Pagnamenta AT, Klei L, Anney R, Merico D, et al: Functional impact of global rare copy number variation in autism spectrum disorders. Nature 466:368-372 (2010).
60.
Poot M, Beyer V, Schwaab I, Damatova N, Van't Slot R, et al: Disruption of CNTNAP2 and additional structural genome changes in a boy with speech delay and autism spectrum disorder. Neurogenetics 11:81-89 (2010a).
61.
Poot M, Eleveld MJ, van't Slot R, Ploos van Amstel HK, Hochstenbach R: Recurrent copy number changes in mentally retarded children harbour genes involved in cellular localization and the glutamate receptor complex. Eur J Hum Genet 18:39-46 (2010b).
62.
Poot M, van der Smagt JJ, Brilstra EH, Bourgeron T: Disentangling the myriad genomics of complex disorders, specifically focusing on autism, epilepsy, and schizophrenia. Cytogenet Genome Res 135:228-240 (2011).
63.
Salyakina D, Cukier HN, Lee JM, Sacharow S, Nations LD, et al: Copy number variants in extended autism spectrum disorder families reveal candidates potentially involved in autism risk. PLoS One 6:e26049 (2011).
64.
Sanders SJ, Ercan-Sencicek AG, Hus V, Luo R, Murtha MT, et al: Multiple recurrent de novo CNVs, including duplications of the 7q11.23 Williams syndrome region, are strongly associated with autism. Neuron 70:863-885 (2011).
65.
Sanders SJ, Murtha MT, Gupta AR, Murdoch JD, Raubeson MJ, et al: De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature 485:237-241 (2012).
66.
Schmeisser MJ, Ey E, Wegener S, Bockmann J, Stempel AV, et al: Autistic-like behaviours and hyperactivity in mice lacking ProSAP1/Shank2. Nature 486:256-260 (2012).
67.
Sebat J, Lakshmi B, Malhotra D, Troge J, Lese-Martin C, et al: Strong association of de novo copy number mutations with autism. Science 316:445-449 (2007).
68.
Shimoda Y, Koseki F, Itoh M, Toyoshima M, Watanabe K: A cis-complex of NB-2/contactin-5 with amyloid precursor-like protein 1 is localized on the presynaptic membrane. Neurosci Lett 510:148-153 (2012).
69.
Skuse DH: Rethinking the nature of genetic vulnerability to autistic spectrum disorders. Trends Genet 23:387-395 (2007).
70.
State MW, Levitt P: The conundrums of understanding genetic risks for autism spectrum disorders. Nat Neurosci 14:1499-1506 (2011).
71.
Toro R, Konyukh M, Delorme R, Leblond C, Chaste P, et al: Key role for gene dosage and synaptic homeostasis in autism spectrum disorders. Trends Genet 26:363-372 (2010).
72.
Toyoshima M, Sakurai K, Shimazaki K, Takeda Y, Nakamoto M, et al: Preferential localization of neural cell recognition molecule NB-2 in developing glutamatergic neurons in the rat auditory brainstem. J Comp Neurol 513:349-362 (2009).
73.
Tropea D, Giacometti E, Wilson NR, Beard C, McCurry C, et al: Partial reversal of Rett Syndrome-like symptoms in MeCP2 mutant mice. Proc Natl Acad Sci USA 106:2029-2034 (2009).
74.
Tsai PT, Hull C, Chu Y, Greene-Colozzi E, Sadowski AR, et al: Autistic-like behaviour and cerebellar dysfunction in Purkinje cell Tsc1 mutant mice. Nature 488:647-651 (2012).
75.
van Daalen E, Kemner C, Verbeek NE, van der Zwaag B, Dijkhuizen T, et al: Social Responsiveness Scale-aided analysis of the clinical impact of copy number variations in autism. Neurogenetics 12:315-323 (2011).
76.
van der Zwaag B, Staal WG, Hochstenbach R, Poot M, Spierenburg HA, et al: A co-segregating microduplication of chromosome 15q11.2 pinpoints two risk genes for autism spectrum disorder. Am J Med Genet B Neuropsychiatr Genet 153B:960-966 (2010).
77.
Veenstra-VanderWeele J, Muller CL, Iwamoto H, Sauer JE, Owens WA, et al: Autism gene variant causes hyperserotonemia, serotonin receptor hypersensitivity, social impairment and repetitive behavior. Proc Natl Acad Sci USA 109:5469-5474 (2012).
78.
Vernes SC, Newbury DF, Abrahams BS, Winchester L, Nicod J, et al: A functional genetic link between distinct developmental language disorders. N Engl J Med 359:2337-2345 (2008).
79.
Vlamings PH, Jonkman LM, van Daalen E, van der Gaag RJ, Kemner C: Basic abnormalities in visual processing affect face processing at an early age in autism spectrum disorder. Biol Psychiatry 68:1107-1113 (2010).
80.
Vorstman JA, Staal WG, van Daalen E, van Engeland H, Hochstenbach PF, Franke L: Identification of novel autism candidate regions through analysis of reported cytogenetic abnormalities associated with autism. Mol Psychiatry 11:1, 18-28 (2006).
81.
Wang K, Zhang H, Ma D, Bucan M, Glessner JT, et al: Common genetic variants on 5p14.1 associate with autism spectrum disorders. Nature 459:528-533 (2009).
82.
Won H, Lee HR, Gee HY, Mah W, Kim JI, et al: Autistic-like social behaviour in Shank2-mutant mice improved by restoring NMDA receptor function. Nature 486:261-265 (2012).
83.
Xu JY, Xia QQ, Xia J: A review on the current neuroligin mouse models. Sheng Li Xue Bao 64:550-562 (2012).
84.
Yu TW, Chahrour MH, Coulter ME, Jiralerspong S, Okamura-Ikeda K, et al: Using whole-exome sequencing to identify inherited causes of autism. Neuron 77:259-273 (2013).
85.
Zhang C, Atasoy D, Araç D, Yang X, Fucillo MV, et al: Neurexins physically and functionally interact with GABA(A) receptors. Neuron 66:403-416 (2010).
86.
Zhao X, Leotta A, Kustanovich V, Lajonchere C, Geschwind DH, et al: A unified genetic theory for sporadic and inherited autism. Proc Natl Acad Sci USA 104:12831-12836 (2007).
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.