Cells sense physical properties of their extracellular environment and translate them into biochemical signals. In this study, cell responses to surfaces with submicron topographies were investigated in cultured human NF1 haploinsufficient fibroblasts. Age-matched fibroblasts from 8 patients with neurofibromatosis type 1 (NF1+/–) and 9 controls (NF1+/+) were cultured on surfaces with grooves of 200 nm height and lateral distance of 2 µm. As cellular response indicator, the mean cell orientation along microstructured grooves was systematically examined. The tested NF1 haploinsufficient fibroblasts were significantly less affected by the topography than those from healthy donors. Incubation of the NF1+/– fibroblasts with the farnesyltransferase inhibitor FTI-277 and other inhibitors of the neurofibromin pathway ameliorates significantly the cell orientation. These data indicate that NF1 haploinsufficiency results in an altered response to specific surface topography in fibroblasts. We suggest a new function of neurofibromin in the sensoric mechanism to topographies and a partial mechanosensoric blindness by NF1 haploinsufficiency.

1.
Ammoun S, Flaiz C, Ristic N, Schuldt J, Hanemann CO: Dissecting and targeting the growth factor-dependent and growth factor-independent extracellular signal-regulated kinase pathway in human schwannoma. Cancer Res 68:5236–5245 (2008).
2.
Banerjee S, Crouse NR, Emnett RJ, Gianino SM, Gutmann DH: Neurofibromatosis-1 regulates mTOR-mediated astrocyte growth and glioma formation in a TSC/Rheb-independent manner. Proc Natl Acad Sci USA 108:15996–16001 (2011).
3.
Biela S, Su Y, Spatz JP, Kemkemer R: Different sensitivity of human endothelial cells, smooth muscle cells and fibroblasts to topography in the nano-micro range. Acta Biomater 5:2460–2466 (2009).
4.
Boyanapalli M, Lahoud OB, Messiaen L, Kim B, Anderle de Sylor MS, et al: Neurofibromin binds to caveolin-1 and regulates ras, FAK and Akt. Biochem Biophys Res Commun 340(4):1200–1208 (2006).
5.
Daginakatte GC, Gutmann DH: Neurofibromatosis-1 (Nf1) heterozygous brain microglia elaborates paracrine factors that promote Nf1-deficient astrocyte and glioma growth. Hum Mol Genet 16:1098–1112 (2007).
6.
Dalby MJ: Topographically induced direct cell mechanotransduction. Med Eng Phys 27:730–742 (2005).
7.
Dalby MJ, Gadegaard N, Herzyk P, Agheli H, Sutherland S, Wilkinson CD: Group analysis of regulation of fibroblast genome on low-adhesion nanostructures. Biomaterials 28:1761–1769 (2007).
8.
Dasgupta B, Li W, Perry A, Gutmann DH: Glioma formation in neurofibromatosis 1 reflects preferential activation of K-RAS in astrocytes. Cancer Res 65:236–245 (2005a).
9.
Dasgupta B, Yi Y, Chen DY, Weber JD, Gutmann DH: Proteomic analysis reveals hyperactivation of the mammalian target of rapamycin pathway in neurofibromatosis 1-associated human and mouse brain tumors. Cancer Res 65:2755–2760 (2005b).
10.
De Schepper S, Boucneau J, Lambert J, Messiaen L, Naeyaert JM: Pigment cell-related manifestations in neurofibromatosis type 1: an overview. Pigment Cell Res 18:13–24 (2005).
11.
Ferner RE: Neurofibromatosis 1. Eur J Hum Genet 15:131–138 (2007).
12.
Gerecht S, Bettinger CJ, Zhang Z, Borenstein JT, Vunjak-Novakovic G, Langer R: The effect of actin disrupting agents on contact guidance of human embryonic stem cells. Biomaterials 28:4068–4077 (2007).
13.
Gottfried ON, Viskochil DH, Couldwell WT: Neurofibromatosis Type 1 and tumorigenesis: molecular mechanisms and therapeutic implications. Neurosurg Focus 28:E8 (2010).
14.
Griesser J, Kaufmann D, Eisenbarth I, Bäuerle C, Krone W: Ras-GTP regulation is not altered in cultured melanocytes with reduced levels of neurofibromin derived from patients with neurofibromatosis 1 (NF1). Biol Chem Hoppe Seyler 376:91–101 (1995).
15.
Gutmann DH, Wu YL, Hedrick NM, Zhu Y, Guha A, Parada LF: Heterozygosity for the neurofibromatosis 1 (NF1) tumor suppressor results in abnormalities in cell attachment, spreading and motility in astrocytes. Hum Mol Genet 10:3009–3016 (2001).
16.
Heervä E, Alanne MH, Peltonen S, Kuorilehto T, Hentunen T, et al: Osteoclasts in neurofibromatosis type 1 display enhanced resorption capacity, aberrant morphology, and resistance to serum deprivation. Bone 47:583–590 (2010).
17.
Hoffman-Kim D, Mitchel JA, Bellamkonda RV: Topography, cell response, and nerve regeneration. Annu Rev Biomed Eng 12:203–231 (2010).
18.
Huang Y, Rangwala F, Fulkerson PC, Ling B, Reed E, et al: Role of TC21/R-Ras2 in enhanced migration of neurofibromindeficient Schwann cells. Oncogene 23:368–378 (2004).
19.
Hyman SL, Shores A, North KN: The nature and frequency of cognitive deficits in children with neurofibromatosis type 1. Neurology 65:1037–1044 (2005).
20.
Ingram DA, Yang FC, Travers JB, Wenning MJ, Hiatt K, et al: Genetic and biochemical evidence that haploinsufficiency of the Nf1 tumor suppressor gene modulates melanocyte and mast cell fates in vivo. J Exp Med 191:181–188 (2000).
21.
Jaalouk DE, Lammerding J: Mechanotransduction gone awry. Nat Rev Mol Cell Biol 10:63–73 (2009).
22.
Janmey P, Miller RT: Mechanisms of mechanical signaling in development and disease. J Cell Sci 124:9–18 (2011).
23.
Jouhilahti EM, Peltonen S, Heape AM, Peltonen J: The pathoetiology of neurofibromatosis 1. Am J Pathol 178:1932–1939 (2011).
24.
Jungbauer S, Kemkemer R, Gruler H, Kaufmann D, Spatz JP: Cell shape normalization, dendrite orientation, and melanin production of normal and genetically altered (haploinsufficient NF1)-melanocytes by microstructured substrate interactions. Chemphyschem 5:85–92 (2004).
25.
Kaufmann D, Wiandt S, Veser J, Krone W: Increased melanogenesis in cultured epidermal melanocytes from patients with neurofibromatosis 1 (NF1). Hum Genet 87:144–150 (1991).
26.
Kaufmann D, Su Y, Biela S, Jungbauer S, Spatz JP, Kemkemer R: Soft lithography detects partial mechano-sensoric blindness to micrometre topography in cultured aged and diseased cells. IJMR 102:896–902 (2011).
27.
Kemkemer R, Schrank S, Vogel W, Gruler H, Kaufmann D: Increased noise as an effect of haploinsufficiency of the tumor-suppressor gene neurofibromatosis type 1 in vitro. Proc Natl Acad Sci USA 99:13783–13788 (2002).
28.
Kemkemer R, Jungbauer S, Kaufmann D, Gruler H: Cell orientation by a microgrooved substrate can be predicted by automatic control theory. Biophys J 90:4701–4711 (2006).
29.
Khalaf WF, Yang FC, Chen S, White H, Bessler W, et al: K-ras is critical for modulating multiple c-kit-mediated cellular functions in wild-type and Nf1+/- mast cells. J Immunol 178:2527–2534 (2007).
30.
Koivunen J, Ylä-Outinen H, Korkiamäki T, Karvonen SL, Pöyhönen M, et al: New function for NF1 tumor suppressor. J Invest Dermatol 114:473–479 (2000).
31.
Korkiamäki T, Ylä-Outinen H, Koivunen J, Karvonen SL, Peltonen J: Altered calcium mediated cell signaling in keratinocytes cultures from patients with neurofibromatosis type 1. Am J Pathol 160:1981–1990 (2002).
32.
Kuorilehto T, Pöyhönen M, Bloigu R, Heikkinen J, Väänänen K, Peltonen J: Decreased bone mineral density and content in neurofibromatosis type 1: lowest local values are located in the load-carrying parts of the body. Osteoporos Int 16:928–936 (2005).
33.
Kurpinski K, Chu J, Hashi C, Li S: Anisotropic mechanosensing by mesenchymal stem cells. Proc Natl Acad Sci USA 103:16095–16100 (2006).
34.
Kweh F, Zheng M, Kurenova E, Wallace M, Golubovskaya V, Cance WG: Neurofibromin physically interacts with the N-terminal domain of focal adhesion kinase. Mol Carcinog 48:1005–1017 (2009).
35.
Lammert M, Kappler M, Mautner VF, Lammert K, Storkel S, et al: Decreased bone mineral density in patients with neurofibromatosis 1. Osteoporos Int 16:1161–1166 (2005).
36.
Lasater EA, Bessler WK, Mead LE, Horn WE, Clapp DW, et al: Nf1+/- mice have increased neointima formation via hyperactivation of a Gleevec sensitive molecular pathway. Hum Mol Genet 17:2336–2344 (2008).
37.
Lee MJ, Stephenson DA: Recent developments in neurofibromatosis type 1. Curr Opin Neurol 20:135–141 (2007).
38.
Li H, Liu Y, Zhang Q, Jing Y, Chen S, et al: Ras dependent paracrine secretion of osteopontin by Nf1+/- osteoblasts promote osteoclast activation in a neurofibromatosis type I murine model. Pediatr Res 65:613–618 (2009).
39.
Lin YL, Lei YT, Hong CJ, Hsueh YP: Syndecan-2 induces filopodia and dendritic spine formation via the neurofibromin-PKA-Ena/VASP pathway. J Cell Biol 177:829–841 (2007).
40.
Lim JY, Donahue HJ: Cell sensing and response to micro- and nanostructured surfaces produced by chemical and topographic patterning. Tissue Eng 13:1879–1891 (2007).
41.
Lim JY, Dreiss AD, Zhou Z, Hansen JC, Siedlecki CA, et al: The regulation of integrin-mediated osteoblast focal adhesion and focal adhesion kinase expression by nanoscale topography. Biomaterials 28:1787–1797 (2007).
42.
Loesberg WA, te Riet J, van Delft FC, Schön P, Figdor CG, et al: The threshold at which substrate nanogroove dimensions may influence fibroblast alignment and adhesion. Biomaterials 28:3944–3951 (2007).
43.
Mashour GA, Ratner N, Khan GA, Wang HL, Martuza RL, Kurtz A: The angiogenic factor midkine is aberrantly expressed in NF1-deficient Schwann cells and is a mitogen for neurofibroma-derived cells. Oncogene 20:97–105 (2001).
44.
McClatchey AI: Neurofibromatosis. Annu Rev Pathol 2:191–216 (2007).
45.
McClatchey AI, Cichowski K: SPRED proteins provide a NF-ty link to Ras suppression. Genes Dev 26:1515–1519 (2012).
46.
McDaniel AS, Allen JD, Park SJ, Jaffer ZM, Michels EG, et al: Pak1 regulates multiple c-Kit mediated Ras-MAPK gain-in-function phenotypes in Nf1+/- mast cells. Blood 112:4646–4654 (2008).
47.
McLaughlin ME, Jacks T: Thinking beyond the tumor cell: Nf1 haploinsufficiency in the tumor environment. Cancer Cell 1:408–410 (2002).
48.
Orr AW, Helmke BP, Blackman BR, Schwartz MA: Mechanisms of mechanotransduction. Dev Cell 10:11–20 (2006).
49.
Ozawa T, Araki N, Yunoue S, Tokuo H, Feng L, et al: The neurofibromatosis type 1 gene product neurofibromin enhances cell motility by regulating actin filament dynamics via the Rho-ROCK-LIMK2-cofilin pathway. J Biol Chem 280:39524–39533 (2005).
50.
Parrinello S, Lloyd AC: Neurofibroma development in NF1–insights into tumour initiation. Trends Cell Biol 19:395–403 (2009).
51.
Pemov A, Park C, Reilly KM, Stewart DR: Evidence of perturbations of cell cycle and DNA repair pathways as a consequence of human and murine NF1-haploinsufficiency. BMC Genomics 11:194 (2010).
52.
Riccardi VM: Von Recklinghausen neurofibromatosis. N Engl J Med 305:1617–1627 (1981).
53.
Rosenbaum T, Rosenbaum C, Winner U, Müller HW, Lenard HG, Hanemann CO: Long-term culture and characterization of human neurofibroma-derived Schwann cells. J Neurosci Res 61:524–532 (2000).
54.
Shapira S, Barkan B, Friedman E, Kloog Y, Stein R: The tumor suppressor neurofibromin confers sensitivity to apoptosis by Ras-dependent and Ras-independent pathways. Cell Death Differ 14:895–906 (2007).
55.
Simmons GW, Pong WW, Emnett RJ, White CR, Gianino SM, et al: Neurofibromatosis-1 heterozygosity increases microglia in a spatially and temporally restricted pattern relevant to mouse optic glioma formation and growth. J Neuropathol Exp Neurol 70:51–62 (2011).
56.
Staser K, Yang FC, Clapp DW: Mast cells and the neurofibroma microenvironment. Blood 116:157–164 (2010).
57.
Staser K, Yang FC, Clapp DW: Pathogenesis of plexiform neurofibroma: tumor-stromal/hematopoietic interactions in tumor progression. Annu Rev Pathol 7:469–495 (2012).
58.
Stevenson DA, Yan J, He Y, Li H, Liu Y, et al: Multiple increased osteoclast functions in individuals with neurofibromatosis type 1. Am J Med Genet A 155A:1050–1059 (2011).
59.
Stowe IB, Mercado EL, Stowe TR, Bell EL, Oses-Prieto JA, et al: A shared molecular mechanism underlies the human rasopathies Legius syndrome and Neurofibromatosis-1. Genes Dev 26:1421–1426 (2012).
60.
Teixeira AI, Abrams GA, Bertics PJ, Murphy CJ, Nealey PF: Epithelial contact guidance on well-defined micro- and nanostructured substrates. J Cell Sci 116:1881–1892 (2003).
61.
Vogel V: Mechanotransduction involving multimodular proteins: converting force into biochemical signals. Annu Rev Biophys Biomol Struct 35:459–488 (2006).
62.
Vogel V, Sheetz M: Local force and geometry sensing regulate cell functions. Nat Rev Mol Cell Biol 7:265–275 (2006).
63.
Wang JH, Li B: Mechanics rules cell biology. Sports Med Arthrosc Rehabil Ther Technol 2:16 (2010).
64.
Welti S, Fraterman S, D’Angelo I, Wilm M, Scheffzek K: The sec14 homology module of neurofibromin binds cellular glycerophospholipids: mass spectrometry and structure of a lipid complex. J Mol Biol 366:551–562 (2007).
65.
Welti S, D’Angelo I, Scheffzek K: Structure and Function of Neurofibromin, in Kaufmann D (ed): Neurofibromatoses, Monogr Hum Genet pp 113–128 (Karger, Basel 2008).
66.
Welti S, Kühn S, D’Angelo I, Brügger B, Kaufmann D, Scheffzek K: Structural and biochemical consequences of NF1 associated nontruncating mutations in the Sec14-PH module of neurofibromin. Hum Mutat 32:191–197 (2011).
67.
Wu M, Wallace MR, Muir D: Nf1 haploinsufficiency augments angiogenesis. Oncogene 25:2297–2303 (2006).
68.
Xu J, Ismat F, Wang T, Yang J, Epstein J: NF1 regulates a Ras-dependent vascular smooth muscle proliferative injury response. Circulation 116:2148–2156 (2007).
69.
Xu SW, Liu S, Eastwood M, Sonnylal S, Denton CP, et al: Rac inhibition reverses the phenotype of fibrotic fibroblasts. PLoS One 4:e7438 (2009).
70.
Yang FC, Chen S, Clegg T, Li X, Morgan T, et al: Nf1+/- mast cells induce neurofibroma like phenotypes through secreted TGF-beta signaling. Hum Mol Genet 15:2421–2437 (2006).
71.
Yang FC, Ingram DA, Chen S, Zhu Y, Yuan J, et al: Nf1-dependent tumors require a microenvironment containing Nf1+/- and c-kit-dependent bone marrow. Cell 135:437–448 (2008).
72.
Yim EK, Leong KW: Significance of synthetic nanostructures in dictating cellular response. Nanomedicine 1:10–21 (2005).
73.
Zenker M: Clinical manifestations of mutations in RAS and related intracellular signal transduction factors. Curr Opin Pediatr 23:443–451(2011).
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.