The development of the craniofacial skeleton is a spatial and temporal process where cranial sutures play a role in the regulation of morphogenesis and growth. Disruption of these cellular and molecular interactions may lead to craniosynostosis, the premature obliteration of one or more cranial sutures, yielding skull growth restriction and malformation perpendicular to the affected suture. Facial deformity and various functional CNS anomalies are other frequent complications. Cranial vault expansion and reconstructive surgery remain the mainstay of treatment but pose an elevated risk of morbidity for the infant. While the etiology of nonsyndromic craniosynostosis remains to be deciphered, gain-of-function mutations in FGFR1-3 and TWIST1 were found to be responsible for more than 3/4 of the most commonly encountered craniofacial syndromes. Animal models have been invaluable to further dissect the role of genes within the cranial sutures and for the development of alternative nonsurgical treatment strategies. In this review, we will present various molecular and pharmacological approaches for the treatment of craniosynostosis that have been tested using in vitro and in vivo assays as well as discuss their potential application in humans focusing on the case of tyrosine kinase inhibitors.

1.
Andreou A, Lamy A, Layet V, Cailliez D, Gobet F, et al: Early-onset low-grade papillary carcinoma of the bladder associated with Apert syndrome and a germline FGFR2 mutation (Pro253Arg). Am J Med Genet A 140:2245-2247 (2006).
2.
Chong SL, Mitchell R, Moursi AM, Winnard P, Losken HW, et al: Rescue of coronal suture fusion using transforming growth factor-beta 3 (Tgf-beta 3) in rabbits with delayed-onset craniosynostosis. Anat Rec A Discov Mol Cell Evol Biol 274:962-971 (2003).
3.
Cohen MM Jr: TGF beta/Smad signaling system and its pathologic correlates. Am J Med Genet A 116A:1-10 (2003).
4.
Cooper GM, Usas A, Olshanski A, Mooney MP, Losee JE, Huard J: Ex vivo Noggin gene therapy inhibits bone formation in a mouse model of postoperative resynostosis. Plast Reconstr Surg 123 Suppl 2:94S-103S (2009).
5.
Cornelissen M, Ottelander Bd, Rizopoulos D, van der Hulst R, Mink van der Molen A, et al: Increase of prevalence of craniosynostosis. J Craniomaxillofac Surg 44:1273-1279 (2016).
6.
de Caestecker M: The transforming growth factor-beta superfamily of receptors. Cytokine Growth Factor Rev 15:1-11 (2004).
7.
Ehmke N, Graul-Neumann L, Smorag L, Koenig R, Segebrecht L, et al: De novo mutations in SLC25A24 cause a craniosynostosis syndrome with hypertrichosis, progeroid appearance, and mitochondrial dysfunction. Am J Hum Genet 101:833-843 (2017).
8.
el Ghouzzi V, Le Merrer M, Perrin-Schmitt F, Lajeunie E, Benit P, et al: Mutations of the TWIST gene in the Saethre-Chotzen syndrome. Nat Genet 15:42-46 (1997).
9.
Eswarakumar VP, Lax I, Schlessinger J: Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev 16:139-149 (2005).
10.
Eswarakumar VP, Ozcan F, Lew ED, Bae JH, Tomé F, et al: Attenuation of signaling pathways stimulated by pathologically activated FGF-receptor 2 mutants prevents craniosynostosis. Proc Natl Acad Sci USA 103:18603-18608 (2006).
11.
Florisson JM, Verkerk AJ, Huigh D, Hoogeboom AJ, Swagemakers S, et al: Boston type craniosynostosis: report of a second mutation in MSX2. Am J Med Genet A 161A:2626-2633 (2013).
12.
Goriely A, McVean GA, Röjmyr M, Ingemarsson B, Wilkie AO: Evidence for selective advantage of pathogenic FGFR2 mutations in the male germ line. Science 301:643-646 (2003).
13.
Gosain AK, Machol JA 4th, Gliniak C, Halligan NL: TGF-beta1 RNA interference in mouse primary dura cell culture: downstream effects on TGF receptors, FGF-2, and FGF-R1 mRNA levels. Plast Reconstr Surg 124:1466-1473 (2009).
14.
Greenwald JA, Mehrara BJ, Spector JA, Warren SM, Fagenholz PJ, et al: In vivo modulation of FGF biological activity alters cranial suture fate. Am J Pathol 158:441-452 (2001).
15.
Helsten T, Schwaederle M, Kurzrock R: Fibroblast growth factor receptor signaling in hereditary and neoplastic disease: biologic and clinical implications. Cancer Metastasis Rev 34:479-496 (2015).
16.
Holmes G: The role of vertebrate models in understanding craniosynostosis. Childs Nerv Syst 28:1471-1481 (2012).
17.
Holmes G, Rothschild G, Roy UB, Deng CX, Mansukhani A, Basilico C: Early onset of craniosynostosis in an Apert mouse model reveals critical features of this pathology. Dev Biol 328:273-284 (2009).
18.
Howard TD, Paznekas WA, Green ED, Chiang LC, Ma N, et al: Mutations in TWIST, a basic helix-loop-helix transcription factor, in Saethre-Chotzen syndrome. Nat Genet 15:36-41 (1997).
19.
Itoh N, Ornitz DM: Evolution of the Fgf and Fgfr gene families. Trends Genet 20:563-569 (2004).
20.
Jabs EW, Müller U, Li X, Ma L, Luo W, et al: A mutation in the homeodomain of the human MSX2 gene in a family affected with autosomal dominant craniosynostosis. Cell 75:443-450 (1993).
21.
Justice CM, Yagnik G, Kim Y, Peter I, Jabs EW, et al: A genome-wide association study identifies susceptibility loci for nonsyndromic sagittal craniosynostosis near BMP2 and within BBS9. Nat Genet 44:1360-1364 (2012).
22.
Keupp K, Li Y, Vargel I, Hoischen A, Richardson R, et al: Mutations in the interleukin receptor IL11RA cause autosomal recessive Crouzon-like craniosynostosis. Mol Genet Genomic Med 1:223-237 (2013).
23.
Kim HJ, Rice DP, Kettunen PJ, Thesleff I: FGF-, BMP- and Shh-mediated signalling pathways in the regulation of cranial suture morphogenesis and calvarial bone development. Development 125:1241-1251 (1998).
24.
Lajeunie E, Le Merrer M, Bonaïti-Pellie C, Marchac D, Renier D: Genetic study of nonsyndromic coronal craniosynostosis. Am J Med Genet 55:500-504 (1995).
25.
Laue K, Pogoda HM, Daniel PB, van Haeringen A, Alanay Y, et al: Craniosynostosis and multiple skeletal anomalies in humans and zebrafish result from a defect in the localized degradation of retinoic acid. Am J Hum Genet 89:595-606 (2011).
26.
McCarthy JG, Warren SM, Bernstein J, Burnett W, Cunningham ML, et al: Parameters of care for craniosynostosis. Cleft Palate Craniofac J 49 Suppl:1S-24S (2012).
27.
McDonell LM, Kernohan KD, Boycott KM, Sawyer SL: Receptor tyrosine kinase mutations in developmental syndromes and cancer: two sides of the same coin. Hum Mol Genet 24:R60-66 (2015).
28.
McDowell LM, Frazier BA, Studelska DR, Giljum K, Chen J, et al: Inhibition or activation of Apert syndrome FGFR2 (S252W) signaling by specific glycosaminoglycans. J Biol Chem 281:6924-6930 (2006).
29.
Melville H, Wang Y, Taub PJ, Jabs EW: Genetic basis of potential therapeutic strategies for craniosynostosis. Am J Med Genet A 152A:3007-3015 (2010).
30.
Miller KA, Twigg SR, McGowan SJ, Phipps JM, Fenwick AL, et al: Diagnostic value of exome and whole genome sequencing in craniosynostosis. J Med Genet 54:260-268 (2017).
31.
Mooney MP, Losken HW, Moursi AM, Bradley J, Azari K, et al: Anti-TGF-beta2 antibody therapy inhibits postoperative resynostosis in craniosynostotic rabbits. Plast Reconstr Surg 119:1200-1212 (2007).
32.
Moursi AM, Winnard PL, Fryer D, Mooney MP: Delivery of transforming growth factor-beta2-perturbing antibody in a collagen vehicle inhibits cranial suture fusion in calvarial organ culture. Cleft Palate Craniofac J 40:225-232 (2003).
33.
Muenke M, Schell U, Hehr A, Robin NH, Losken HW, et al: A common mutation in the fibroblast growth factor receptor 1 gene in Pfeiffer syndrome. Nat Genet 8:269-274 (1994).
34.
Muenke M, Gripp KW, McDonald-McGinn DM, Gaudenz K, Whitaker LA, et al: A unique point mutation in the fibroblast growth factor receptor 3 gene (FGFR3) defines a new craniosynostosis syndrome. Am J Hum Genet 60:555-564 (1997).
35.
Opperman LA, Nolen AA, Ogle RC: TGF-beta 1, TGF-beta 2, and TGF-beta 3 exhibit distinct patterns of expression during cranial suture formation and obliteration in vivo and in vitro. J Bone Miner Res. 12(3):301-10 (1997).
36.
Opperman LA, Chhabra A, Cho RW, Ogle RC: Cranial suture obliteration is induced by removal of transforming growth factor (TGF)-beta 3 activity and prevented by removal of TGF-beta 2 activity from fetal rat calvaria in vitro. J Craniofac Genet Dev Biol 19:164-173 (1999).
37.
Opperman LA, Adab K, Gakunga PT: Transforming growth factor-beta 2 and TGFbeta 3 regulate fetal rat cranial suture morphogenesis by regulating rates of cell proliferation and apoptosis. Dev Dyn 219:237-247 (2000).
38.
Opperman LA, Moursi AM, Sayne JR, Wintergerst AM: Transforming growth factor-beta 3 (Tgf-beta3) in a collagen gel delays fusion of the rat posterior interfrontal suture in vivo. Anat Rec 267:120-130 (2002).
39.
Opperman LA, Fernandez CR, So S, Rawlins JT: Erk1/2 signaling is required for Tgf-beta 2-induced suture closure. Dev Dyn 235(5):1292-9 (2006).
40.
Ornitz DM, Itoh N: Fibroblast growth factors. Genome Biol 2:reviews3005.1-reviews3005.12 (2001).
41.
Passos-Bueno MR, Serti Eacute AE, Jehee FS, Fanganiello R, Yeh E: Genetics of craniosynostosis: genes, syndromes, mutations and genotype-phenotype correlations. Front Oral Biol. 12:107-43 (2008).
42.
Perlyn CA, Morriss-Kay G, Darvann T, Tenenbaum M, Ornitz DM: A model for the pharmacological treatment of crouzon syndrome. Neurosurgery. 59(1):210-5 (2006).
43.
Pollock PM, Gartside MG, Dejeza LC, Powell MA, Mallon MA, et al: Frequent activating FGFR2 mutations in endometrial carcinomas parallel germline mutations associated with craniosynostosis and skeletal dysplasia syndromes. Oncogene. 26(50):7158-62 (2007).
44.
Rawlins JT, Opperman LA: Tgf-beta regulation of suture morphogenesis and growth. Front Oral Biol. 12:178-96 (2008).
45.
Reardon W, Winter RM, Rutland P, Pulleyn LJ, Jones BM, Malcolm S: Mutations in the fibroblast growth factor receptor 2 gene cause Crouzon syndrome. Nat Genet. 8(1):98-103 (1994).
46.
Roth DA, Gold LI, Han VK, McCarthy JG, Sung JJ, et al: Immunolocalization of transforming growth factor beta 1, beta 2, and beta 3 and insulin-like growth factor I in premature cranial suture fusion. Plast Reconstr Surg. 99(2):300-9 (1997)
47.
Rouzier C, Soler C, Hofman P, Brennetot C, Bieth E, Pedeutour F: Ovarian dysgerminoma and Apert syndrome. Pediatr Blood Cancer. 50(3):696-8 (2008).
48.
Rutland P, Pulleyn LJ, Reardon W, Baraitser M, Hayward R, et al: Identical mutations in the FGFR2 gene cause both Pfeiffer and Crouzon syndrome phenotypes. Nat Genet. 9(2):173-6 (1995).
49.
Shen K, Krakora SM, Cunningham M, Singh M, Wang X, et al: Medical treatment of craniosynostosis: recombinant Noggin inhibits coronal suture closure in the rat craniosynostosis model. Orthod Craniofac Res. 12(3):254-62 (2009).
50.
Shukla V, Coumoul X, Wang RH, Kim HS, Deng CX: RNA interference and inhibition of MEK-ERK signaling prevent abnormal skeletal phenotypes in a mouse model of craniosynostosis. Nat Genet. 39(9):1145-50 (2007).
51.
Thomas GP, Wilkie AO, Richards PG, Wall SA: FGFR3 P250R mutation increases the risk of reoperation in apparent ‘nonsyndromic' coronal craniosynostosis. J Craniofac Surg. 16(3):347-52 (2005).
52.
Wang Y, Zhou X, Oberoi K, Phelps R, Couwenhoven R, et al: p38 Inhibition ameliorates skin and skull abnormalities in Fgfr2 Beare-Stevenson mice. J Clin Invest. 122(6):2153-64 (2012).
53.
Warren SM, Brunet LJ, Harland RM, Economides AN, Longaker MT: The BMP antagonist noggin regulates cranial suture fusion. Nature. 422(6932):625-9 (2003).
54.
Wilkie AO: Bad bones, absent smell, selfish testes: the pleiotropic consequences of human FGF receptor mutations. Cytokine Growth Factor Rev. (2):187-203 (2005).
55.
Wilkie AO: Cancer drugs to treat birth defects. Nat Genet. 39(9):1057-9 (2007).
56.
Wilkie AO, Slaney SF, Oldridge M, Poole MD, Ashworth GJ, et al: Apert syndrome results from localized mutations of FGFR2 and is allelic with Crouzon syndrome. Nat Genet. 9(2):165-72. (1995).
57.
Wilkie AO, Byren JC, Hurst JA, Jayamohan J, Johnson D, et al: Prevalence and complications of single-gene and chromosomal disorders in craniosynostosis. Pediatrics. 126(2):e391-400 (2010).
58.
Woods RH, Ul-Haq E, Wilkie AO, Jayamohan J, Richards PG, et al: Reoperation for intracranial hypertension in TWIST1-confirmed Saethre-Chotzen syndrome: a 15-year review. Plast Reconstr Surg. 123(6):1801-10 (2009).
59.
Yin L, Du X, Li C, Xu X, Chen Z, et al: A Pro253Arg mutation in fibroblast growth factor receptor 2 (Fgfr2) causes skeleton malformation mimicking human Apert syndrome by affecting both chondrogenesis and osteogenesis. Bone. 42(4):631-43 (2008).
60.
Yokota M, Kobayashi Y, Morita J, Suzuki H, Hashimoto Y, et al: Therapeutic effect of nanogel-based delivery of soluble FGFR2 with S252W mutation on craniosynostosis. PLoS One. 9(7):e101693 (2014).
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.