Abstract
Androgens and estrogens are primarily made from dehydroepiandrosterone (DHEA), which is made from cholesterol via four steps. First, cholesterol enters the mitochondria with the assistance of the steroidogenic acute regulatory protein (StAR). Mutations in the StAR gene cause congenital lipoid adrenal hyperplasia (lipoid CAH), a potentially lethal disease in which virtually no steroids are made. Lipoid CAH is common among Palestinian Arabs and people from eastern Arabia, and among Korean and Japanese people. Second, within the mitochondria, cholesterol is converted to pregnenolone by the cholesterol side chain cleavage enzyme, P450scc; disorder of this enzyme is very rare, probably due to embryonic lethality. Third, pregnenolone undergoes 17α-hydroxylation by microsomal P450c17. 17α-Hydroxylase deficiency, manifesting as female sexual infantilism and hypertension, is rare except in Brazil. Finally, 17-OH pregnenolone is converted to DHEA by the 17,20 lyase activity of P450c17. The ratio of the 17,20 lyase to 17α-hydroxylase activity of P450c17 determines the ratio of C21 to C19 steroids produced. This ratio is regulated posttranslationally by at least three factors: the abundance of the electron-donating protein P450 oxidoreductase (POR), the presence of cytochrome b5 and the serine phosphorylation of P450c17. Mutations of POR are a new, recently described disorder manifesting as the Antley-Bixler skeletal dysplasia syndrome, and a form of polycystic ovary syndrome.