Microglia are the primary innate immune cell type in the brain that have been implicated in the pathogenesis of several neurodegenerative and neuropsychiatric disorders, most notably Alzheimer’s disease (AD) and schizophrenia. Microglia generated from human induced pluripotent stem cells (hiPSCs) represent a promising in vitro cellular model for studying the neuroimmune interactions involved in these disorders. Among several methods of generating ­hiPSC-derived microglia (iMG) – varying in duration and resultant purity – a recent protocol by Brownjohn et al. [Stem Cell Reports. 2018 Apr;10(4):1294–307] is particularly simple and efficient. However, the replicability of this method, transcriptomic similarity of these iMG to primary adult microglia, and their genetic relevance to disease (i.e., enrichment of disease risk loci in genes preferentially expressed in these cells) remains unclear. Using two hiPSC lines, we demonstrated that Brownjohn’s protocol can rapidly generate iMG that morphologically and functionally resembled microglia. The iMG cells we generated were found to be transcriptionally similar to previously reported iMG, as well as fetal and adult microglia. Furthermore, by using cell type-specific gene expression to partition disease heritability, we showed that iMG cells are genetically relevant to AD but found no significant enrichments of risk loci of Parkinson’s disease, schizophrenia, major depressive disorder, bipolar disorder, autism spectrum disorder, or body mass index. Across a range of neuronal and immune cell types, we found only iMG, primary microglia, and microglia-like cell types exhibited a significant enrichment for AD heritability. Our results thus support the use of iMG as a human cellular model for understanding AD biology and underlying genetic factors, as well as for developing and efficiently screening new therapeutics.

1.
Hardy
J
,
Selkoe
DJ
.
The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics
.
Science
.
2002
Jul
;
297
(
5580
):
353
6
.
[PubMed]
0036-8075
2.
Hollingworth
P
,
Harold
D
,
Sims
R
,
Gerrish
A
,
Lambert
JC
,
Carrasquillo
MM
, et al.;
Alzheimer’s Disease Neuroimaging Initiative
;
CHARGE consortium
;
EADI1 consortium
.
Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer’s disease
.
Nat Genet
.
2011
May
;
43
(
5
):
429
35
.
[PubMed]
1061-4036
3.
Naj
AC
,
Jun
G
,
Beecham
GW
,
Wang
LS
,
Vardarajan
BN
,
Buros
J
, et al.
.
Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer’s disease
.
Nat Genet
.
2011
May
;
43
(
5
):
436
41
.
[PubMed]
1061-4036
4.
Karch
CM
,
Goate
AM
.
Alzheimer’s disease risk genes and mechanisms of disease pathogenesis
.
Biol Psychiatry
.
2015
Jan
;
77
(
1
):
43
51
.
[PubMed]
0006-3223
5.
Lambert
JC
,
Ibrahim-Verbaas
CA
,
Harold
D
,
Naj
AC
,
Sims
R
,
Bellenguez
C
, et al.;
European Alzheimer’s Disease Initiative (EADI)
;
Genetic and Environmental Risk in Alzheimer’s Disease
;
Alzheimer’s Disease Genetic Consortium
;
Cohorts for Heart and Aging Research in Genomic Epidemiology
.
Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease
.
Nat Genet
.
2013
Dec
;
45
(
12
):
1452
8
.
[PubMed]
1061-4036
6.
Jansen
IE
,
Savage
JE
,
Watanabe
K
,
Bryois
J
,
Williams
DM
,
Steinberg
S
, et al.
.
Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk
.
Nat Genet
.
2019
Mar
;
51
(
3
):
404
13
.
[PubMed]
1061-4036
7.
Sims
R
,
van der Lee
SJ
,
Naj
AC
,
Bellenguez
C
,
Badarinarayan
N
,
Jakobsdottir
J
, et al.;
ARUK Consortium
;
GERAD/PERADES, CHARGE, ADGC, EADI
.
Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer’s disease
.
Nat Genet
.
2017
Sep
;
49
(
9
):
1373
84
.
[PubMed]
1061-4036
8.
Keren-Shaul
H
,
Spinrad
A
,
Weiner
A
,
Matcovitch-Natan
O
,
Dvir-Szternfeld
R
,
Ulland
TK
,
David
E
,
Baruch
K
,
Lara-Astaiso
D
,
Toth
B
,
Itzkovitz
S
,
Colonna
M
,
Schwartz
M
,
Amit
I
:
A Unique Microglia Type Associated with Restricting Development of Alzheimer's Disease.
Cell
2017
;169:1276-1290 e1217.
9.
Galatro
TF
,
Holtman
IR
,
Lerario
AM
,
Vainchtein
ID
,
Brouwer
N
,
Sola
PR
, et al.
.
Transcriptomic analysis of purified human cortical microglia reveals age-associated changes
.
Nat Neurosci
.
2017
Aug
;
20
(
8
):
1162
71
.
[PubMed]
1097-6256
10.
Kierdorf
K
,
Erny
D
,
Goldmann
T
,
Sander
V
,
Schulz
C
,
Perdiguero
EG
, et al.
.
Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways
.
Nat Neurosci
.
2013
Mar
;
16
(
3
):
273
80
.
[PubMed]
1097-6256
11.
Ginhoux
F
,
Greter
M
,
Leboeuf
M
,
Nandi
S
,
See
P
,
Gokhan
S
, et al.
.
Fate mapping analysis reveals that adult microglia derive from primitive macrophages
.
Science
.
2010
Nov
;
330
(
6005
):
841
5
.
[PubMed]
0036-8075
12.
Prinz
M
,
Priller
J
.
Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease
.
Nat Rev Neurosci
.
2014
May
;
15
(
5
):
300
12
.
[PubMed]
1471-003X
13.
Nayak
D
,
Roth
TL
,
McGavern
DB
.
Microglia development and function
.
Annu Rev Immunol
.
2014
;
32
(
1
):
367
402
.
[PubMed]
0732-0582
14.
Muffat
J
,
Li
Y
,
Yuan
B
,
Mitalipova
M
,
Omer
A
,
Corcoran
S
, et al.
.
Efficient derivation of microglia-like cells from human pluripotent stem cells
.
Nat Med
.
2016
Nov
;
22
(
11
):
1358
67
.
[PubMed]
1078-8956
15.
Abud
EM
,
Ramirez
RN
,
Martinez
ES
,
Healy
LM
,
Nguyen
CHH
,
Newman
SA
,
Yeromin
AV
,
Scarfone
VM
,
Marsh
SE
,
Fimbres
C
,
Caraway
CA
,
Fote
GM
,
Madany
AM
,
Agrawal
A
,
Kayed
R
,
Gylys
KH
,
Cahalan
MD
,
Cummings
BJ
,
Antel
JP
,
Mortazavi
A
,
Carson
MJ
,
Poon
WW
,
Blurton-Jones
M
: iPSC-Derived Human Microglia-like Cells to Study Neurological Diseases. Neuron
2017
;94:278-293 e279.
16.
Douvaras
P
,
Sun
B
,
Wang
M
,
Kruglikov
I
,
Lallos
G
,
Zimmer
M
, et al.
.
Directed Differentiation of Human Pluripotent Stem Cells to Microglia
.
Stem Cell Reports
.
2017
Jun
;
8
(
6
):
1516
24
.
[PubMed]
2213-6711
17.
Haenseler
W
,
Sansom
SN
,
Buchrieser
J
,
Newey
SE
,
Moore
CS
,
Nicholls
FJ
, et al.
.
A Highly Efficient Human Pluripotent Stem Cell Microglia Model Displays a Neuronal-Co-culture-Specific Expression Profile and Inflammatory Response
.
Stem Cell Reports
.
2017
Jun
;
8
(
6
):
1727
42
.
[PubMed]
2213-6711
18.
Pandya
H
,
Shen
MJ
,
Ichikawa
DM
,
Sedlock
AB
,
Choi
Y
,
Johnson
KR
, et al.
.
Differentiation of human and murine induced pluripotent stem cells to microglia-like cells
.
Nat Neurosci
.
2017
May
;
20
(
5
):
753
9
.
[PubMed]
1097-6256
19.
Brownjohn
PW
,
Smith
J
,
Solanki
R
,
Lohmann
E
,
Houlden
H
,
Hardy
J
, et al.
.
Functional Studies of Missense TREM2 Mutations in Human Stem Cell-Derived Microglia
.
Stem Cell Reports
.
2018
Apr
;
10
(
4
):
1294
307
.
[PubMed]
2213-6711
20.
Sekar
A
,
Bialas
AR
,
de Rivera
H
,
Davis
A
,
Hammond
TR
,
Kamitaki
N
, et al.;
Schizophrenia Working Group of the Psychiatric Genomics Consortium
.
Schizophrenia risk from complex variation of complement component 4
.
Nature
.
2016
Feb
;
530
(
7589
):
177
83
.
[PubMed]
0028-0836
21.
Sellgren
CM
,
Gracias
J
,
Watmuff
B
,
Biag
JD
,
Thanos
JM
,
Whittredge
PB
, et al.
.
Increased synapse elimination by microglia in schizophrenia patient-derived models of synaptic pruning
.
Nat Neurosci
.
2019
Mar
;
22
(
3
):
374
85
.
[PubMed]
1097-6256
22.
Bachiller
S
,
Jiménez-Ferrer
I
,
Paulus
A
,
Yang
Y
,
Swanberg
M
,
Deierborg
T
, et al.
.
Microglia in Neurological Diseases: A Road Map to Brain-Disease Dependent-Inflammatory Response
.
Front Cell Neurosci
.
2018
Dec
;
12
:
488
.
[PubMed]
1662-5102
23.
de Leeuw
CA
,
Mooij
JM
,
Heskes
T
,
Posthuma
D
.
MAGMA: generalized gene-set analysis of GWAS data
.
PLOS Comput Biol
.
2015
Apr
;
11
(
4
):
e1004219
.
[PubMed]
1553-734X
24.
Bulik-Sullivan
BK
,
Loh
PR
,
Finucane
HK
,
Ripke
S
,
Yang
J
,
Patterson
N
, et al.;
Schizophrenia Working Group of the Psychiatric Genomics Consortium
.
LD Score regression distinguishes confounding from polygenicity in genome-wide association studies
.
Nat Genet
.
2015
Mar
;
47
(
3
):
291
5
.
[PubMed]
1061-4036
25.
Finucane
HK
,
Bulik-Sullivan
B
,
Gusev
A
,
Trynka
G
,
Reshef
Y
,
Loh
PR
, et al.;
ReproGen Consortium
;
Schizophrenia Working Group of the Psychiatric Genomics Consortium
;
RACI Consortium
.
Partitioning heritability by functional annotation using genome-wide association summary statistics
.
Nat Genet
.
2015
Nov
;
47
(
11
):
1228
35
.
[PubMed]
1061-4036
26.
Finucane
HK
,
Reshef
YA
,
Anttila
V
,
Slowikowski
K
,
Gusev
A
,
Byrnes
A
, et al.;
Brainstorm Consortium
.
Heritability enrichment of specifically expressed genes identifies disease-relevant tissues and cell types
.
Nat Genet
.
2018
Apr
;
50
(
4
):
621
9
.
[PubMed]
1061-4036
27.
Skene
NG
,
Bryois
J
,
Bakken
TE
,
Breen
G
,
Crowley
JJ
,
Gaspar
HA
, et al.;
Major Depressive Disorder Working Group of the Psychiatric Genomics Consortium
.
Genetic identification of brain cell types underlying schizophrenia
.
Nat Genet
.
2018
Jun
;
50
(
6
):
825
33
.
[PubMed]
1061-4036
28.
Darmanis
S
,
Sloan
SA
,
Zhang
Y
,
Enge
M
,
Caneda
C
,
Shuer
LM
, et al.
.
A survey of human brain transcriptome diversity at the single cell level
.
Proc Natl Acad Sci USA
.
2015
Jun
;
112
(
23
):
7285
90
.
[PubMed]
0027-8424
29.
Tansey
KE
,
Cameron
D
,
Hill
MJ
.
Genetic risk for Alzheimer’s disease is concentrated in specific macrophage and microglial transcriptional networks
.
Genome Med
.
2018
Feb
;
10
(
1
):
14
.
[PubMed]
1756-994X
30.
Boyle
EA
,
Li
YI
,
Pritchard
JK
.
An Expanded View of Complex Traits: From Polygenic to Omnigenic
.
Cell
.
2017
Jun
;
169
(
7
):
1177
86
.
[PubMed]
0092-8674
31.
Forrest
MP
,
Zhang
H
,
Moy
W
,
McGowan
H
,
Leites
C
,
Dionisio
LE
,
Xu
Z
,
Shi
J
,
Sanders
AR
,
Greenleaf
WJ
,
Cowan
CA
,
Pang
ZP
,
Gejman
PV
,
Penzes
P
,
Duan
J
:
Open Chromatin Profiling in hiPSC-Derived Neurons Prioritizes Functional Noncoding Psychiatric Risk Variants and Highlights Neurodevelopmental Loci.
Cell Stem Cell
2017
;21:305-318 e308.
32.
Zhang
S
,
Moy
W
,
Zhang
H
,
Leites
C
,
McGowan
H
,
Shi
J
, et al.
.
Open chromatin dynamics reveals stage-specific transcriptional networks in hiPSC-based neurodevelopmental model
.
Stem Cell Res (Amst)
.
2018
May
;
29
:
88
98
.
[PubMed]
1873-5061
33.
Sampson
TR
,
Debelius
JW
,
Thron
T
,
Janssen
S
,
Shastri
GG
,
Ilhan
ZE
,
Challis
C
,
Schretter
CE
,
Rocha
S
,
Gradinaru
V
,
Chesselet
MF
,
Keshavarzian
A
,
Shannon
KM
,
Krajmalnik-Brown
R
,
Wittung-Stafshede
P
,
Knight
R
,
Mazmanian
SK
:
Gut Microbiota Regulate Motor Deficits and Neuroinflammation in a Model of Parkinson's Disease.
Cell
2016
;167:1469-1480 e1412.
34.
Hirsch
EC
,
Hunot
S
.
Neuroinflammation in Parkinson’s disease: a target for neuroprotection
.
Lancet Neurol
.
2009
Apr
;
8
(
4
):
382
97
.
[PubMed]
1474-4422
35.
Haarman
BC
,
Riemersma-Van der Lek
RF
,
de Groot
JC
,
Ruhé
HG
,
Klein
HC
,
Zandstra
TE
, et al.
.
Neuroinflammation in bipolar disorder - A [(11)C]-(R)-PK11195 positron emission tomography study
.
Brain Behav Immun
.
2014
Aug
;
40
:
219
25
.
[PubMed]
0889-1591
36.
Hurley
LL
,
Tizabi
Y
.
Neuroinflammation, neurodegeneration, and depression
.
Neurotox Res
.
2013
Feb
;
23
(
2
):
131
44
.
[PubMed]
1029-8428
37.
Tang
MM
,
Lin
WJ
,
Pan
YQ
,
Li
YC
.
Fibroblast Growth Factor 2 Modulates Hippocampal Microglia Activation in a Neuroinflammation Induced Model of Depression
.
Front Cell Neurosci
.
2018
Aug
;
12
:
255
.
[PubMed]
1662-5102
38.
Suzuki
K
,
Sugihara
G
,
Ouchi
Y
,
Nakamura
K
,
Futatsubashi
M
,
Takebayashi
K
, et al.
.
Microglial activation in young adults with autism spectrum disorder
.
JAMA Psychiatry
.
2013
Jan
;
70
(
1
):
49
58
.
[PubMed]
2168-622X
39.
Sellgren
CM
,
Sheridan
SD
,
Gracias
J
,
Xuan
D
,
Fu
T
,
Perlis
RH
.
Patient-specific models of microglia-mediated engulfment of synapses and neural progenitors
.
Mol Psychiatry
.
2017
Feb
;
22
(
2
):
170
7
.
[PubMed]
1359-4184
40.
Rothhammer
V
,
Borucki
DM
,
Tjon
EC
,
Takenaka
MC
,
Chao
CC
,
Ardura-Fabregat
A
, et al.
.
Microglial control of astrocytes in response to microbial metabolites
.
Nature
.
2018
May
;
557
(
7707
):
724
8
.
[PubMed]
0028-0836
41.
Liddelow
SA
,
Guttenplan
KA
,
Clarke
LE
,
Bennett
FC
,
Bohlen
CJ
,
Schirmer
L
, et al.
.
Neurotoxic reactive astrocytes are induced by activated microglia
.
Nature
.
2017
Jan
;
541
(
7638
):
481
7
.
[PubMed]
0028-0836
42.
Shi
J
,
Levinson
DF
,
Duan
J
,
Sanders
AR
,
Zheng
Y
,
Pe’er
I
, et al.
.
Common variants on chromosome 6p22.1 are associated with schizophrenia
.
Nature
.
2009
Aug
;
460
(
7256
):
753
7
.
[PubMed]
0028-0836
43.
Müller
FJ
,
Schuldt
BM
,
Williams
R
,
Mason
D
,
Altun
G
,
Papapetrou
EP
, et al.
.
A bioinformatic assay for pluripotency in human cells
.
Nat Methods
.
2011
Apr
;
8
(
4
):
315
7
.
[PubMed]
1548-7091
44.
Weissbein
U
,
Schachter
M
,
Egli
D
,
Benvenisty
N
.
Analysis of chromosomal aberrations and recombination by allelic bias in RNA-Seq
.
Nat Commun
.
2016
Jul
;
7
(
1
):
12144
.
[PubMed]
2041-1723
45.
Buskin
A
,
Zhu
L
,
Chichagova
V
,
Basu
B
,
Mozaffari-Jovin
S
,
Dolan
D
, et al.
.
Disrupted alternative splicing for genes implicated in splicing and ciliogenesis causes PRPF31 retinitis pigmentosa
.
Nat Commun
.
2018
Oct
;
9
(
1
):
4234
.
[PubMed]
2041-1723
46.
Hadjicharalambous
MR
,
Roux
BT
,
Feghali-Bostwick
CA
,
Murray
LA
,
Clarke
DL
,
Lindsay
MA
.
Long Non-coding RNAs Are Central Regulators of the IL-1β-Induced Inflammatory Response in Normal and Idiopathic Pulmonary Lung Fibroblasts
.
Front Immunol
.
2018
Dec
;
9
:
2906
.
[PubMed]
1664-3224
47.
Bolger
AM
,
Lohse
M
,
Usadel
B
.
Trimmomatic: a flexible trimmer for Illumina sequence data
.
Bioinformatics
.
2014
Aug
;
30
(
15
):
2114
20
.
[PubMed]
1367-4803
48.
Dobin
A
,
Davis
CA
,
Schlesinger
F
,
Drenkow
J
,
Zaleski
C
,
Jha
S
, et al.
.
STAR: ultrafast universal RNA-seq aligner
.
Bioinformatics
.
2013
Jan
;
29
(
1
):
15
21
.
[PubMed]
1367-4803
49.
Liao
Y
,
Smyth
GK
,
Shi
W
.
featureCounts: an efficient general purpose program for assigning sequence reads to genomic features
.
Bioinformatics
.
2014
Apr
;
30
(
7
):
923
30
.
[PubMed]
1367-4803
50.
Durinck
S
,
Spellman
PT
,
Birney
E
,
Huber
W
.
Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt
.
Nat Protoc
.
2009
;
4
(
8
):
1184
91
.
[PubMed]
1754-2189
51.
Hansen
KD
,
Irizarry
RA
,
Wu
Z
.
Removing technical variability in RNA-seq data using conditional quantile normalization
.
Biostatistics
.
2012
Apr
;
13
(
2
):
204
16
.
[PubMed]
1465-4644
52.
Robinson
MD
,
McCarthy
DJ
,
Smyth
GK
.
edgeR: a Bioconductor package for differential expression analysis of digital gene expression data
.
Bioinformatics
.
2010
Jan
;
26
(
1
):
139
40
.
[PubMed]
1367-4803
53.
Witten
DM
.
Classification and clustering of sequencing data using a Poisson model
.
Ann Appl Stat
.
2011
;
5
(
4
):
2493
518
. 1932-6157
54.
Skene
NG
,
Grant
SG
.
Identification of Vulnerable Cell Types in Major Brain Disorders Using Single Cell Transcriptomes and Expression Weighted Cell Type Enrichment
.
Front Neurosci
.
2016
Jan
;
10
:
16
.
[PubMed]
1662-4548
55.
Nalls
MA
.
Consortium IPsDG: Expanding Parkinson’s disease genetics: novel risk loci, genomic context, causal insights and heritable risk
.
bioRxiv
.
2019
.
56.
Schizophrenia Working Group of the Psychiatric Genomics Consortium
.
Biological insights from 108 schizophrenia-associated genetic loci
.
Nature
.
2014
Jul
;
511
(
7510
):
421
7
.
[PubMed]
0028-0836
57.
Wray
NR
,
Ripke
S
,
Mattheisen
M
,
Trzaskowski
M
,
Byrne
EM
,
Abdellaoui
A
, et al.;
eQTLGen
;
23andMe
;
Major Depressive Disorder Working Group of the Psychiatric Genomics Consortium
.
Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression
.
Nat Genet
.
2018
May
;
50
(
5
):
668
81
.
[PubMed]
1061-4036
58.
Stahl
EA
,
Breen
G
,
Forstner
AJ
,
McQuillin
A
,
Ripke
S
,
Trubetskoy
V
, et al.
.
Genome-wide association study identifies 30 Loci Associated with Bipolar Disorder
.
bioRxiv
.
2018
;
•••
:
173062
.
59.
Grove
J
,
Ripke
S
,
Als
TD
,
Mattheisen
M
,
Walters
RK
,
Won
H
, et al.;
Autism Spectrum Disorder Working Group of the Psychiatric Genomics Consortium
;
BUPGEN
;
Major Depressive Disorder Working Group of the Psychiatric Genomics Consortium
;
23andMe Research Team
.
Identification of common genetic risk variants for autism spectrum disorder
.
Nat Genet
.
2019
Mar
;
51
(
3
):
431
44
.
[PubMed]
1061-4036
60.
Yengo
L
,
Sidorenko
J
,
Kemper
KE
,
Zheng
Z
,
Wood
AR
,
Weedon
MN
, et al.;
GIANT Consortium
.
Meta-analysis of genome-wide association studies for height and body mass index in ∼700000 individuals of European ancestry
.
Hum Mol Genet
.
2018
Oct
;
27
(
20
):
3641
9
.
[PubMed]
0964-6906
61.
Genomes Project C
.
Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, Korbel JO, Marchini JL, McCarthy S, McVean GA, Abecasis GR: A global reference for human genetic variation
.
Nature
.
2015
;
526
(
7571
):
68
74
. 0028-0836
You do not currently have access to this content.