Around 300 million individuals are affected by major depressive disorder (MDD) in the world. Despite this high number of affected individuals, more than 50% of patients do not respond to antidepressants approved to treat MDD. Patients with MDD that do not respond to 2 or more first-line antidepressant treatments are considered to have treatment-resistant depression (TRD). Animal models of depression are important tools to better understand the pathophysiology of MDD as well as to help in the development of novel and fast antidepressants for TRD patients. This review will emphasize some discovery strategies for TRD from studies on animal models, including, antagonists of N-methyl-D-aspartate (NMDA) receptor (ketamine and memantine), electroconvulsive therapy (ECT), lithium, minocycline, quetiapine, and deep brain stimulation. Animal models of depression are not sufficient to represent all the traits of TRD, but they greatly aid in understanding the mechanism by which therapies that work for TRD exert antidepressant effects. Interestingly, these innovative therapies have mechanisms of action different from those of classic antidepressants. These effects are mainly related to the regulation of neurotransmitter activity, including general glutamate and increased connectivity, synaptic capacity, and neuroplasticity.

1.
WHO
. Depression. Available online http://www.who.int/mediacentre/factsheets/fs369/en/.
2017
.
2.
Pan
Z
,
Grovu
RC
,
Cha
DS
,
Carmona
NE
,
Subramaniapillai
M
,
Shekotikhina
M
, et al.
Pharmacological Treatment of Cognitive Symptoms in Major Depressive Disorder
.
CNS Neurol Disord Drug Targets
.
2017
;
16
(
8
):
891
9
.
[PubMed]
1996-3181
3.
Serafini
G
,
Adavastro
G
,
Canepa
G
,
Capobianco
L
,
Conigliaro
C
,
Pittaluga
F
, et al.
Abnormalities in Kynurenine Pathway Metabolism in Treatment-Resistant Depression and Suicidality: A Systematic Review
.
CNS Neurol Disord Drug Targets
.
2017
;
16
(
4
):
440
53
.
[PubMed]
1871-5273
4.
Caldarone
BJ
,
Zachariou
V
,
King
SL
.
Rodent models of treatment-resistant depression
.
Eur J Pharmacol
.
2015
Apr
;
753
:
51
65
.
[PubMed]
0014-2999
5.
Hindmarch
I
.
Expanding the horizons of depression: beyond the monoamine hypothesis
.
Hum Psychopharmacol
.
2001
Apr
;
16
(
3
):
203
18
.
[PubMed]
0885-6222
6.
Duman
RS
,
Aghajanian
GK
,
Sanacora
G
,
Krystal
JH
.
Synaptic plasticity and depression: new insights from stress and rapid-acting antidepressants
.
Nat Med
.
2016
Mar
;
22
(
3
):
238
49
.
[PubMed]
1078-8956
7.
Huynh
NN
,
McIntyre
RS
.
What are the implications of the STAR D trial for primary care— a review and synthesis
.
Prim Care Companion J Clin Psychiatry
.
2008
;
10
(
2
):
91
6
.
[PubMed]
1523-5998
8.
Duman
RS
,
Li
N
,
Liu
RJ
,
Duric
V
,
Aghajanian
G
.
Signaling pathways underlying the rapid antidepressant actions of ketamine
.
Neuropharmacology
.
2012
Jan
;
62
(
1
):
35
41
.
[PubMed]
0028-3908
9.
Gerhard
DM
,
Wohleb
ES
,
Duman
RS
.
Emerging treatment mechanisms for depression: focus on glutamate and synaptic plasticity
.
Drug Discov Today
.
2016
Mar
;
21
(
3
):
454
64
.
[PubMed]
1359-6446
10.
Fava
M
,
Rush
AJ
,
Trivedi
MH
,
Nierenberg
AA
,
Thase
ME
,
Sackeim
HA
, et al.;
for the STAR∗D Investigators Group
.
Background and rationale for the sequenced treatment alternatives to relieve depression (STAR*D) study
.
Psychiatr Clin North Am
.
2003
Jun
;
26
(
2
):
457
94
.
[PubMed]
0193-953X
11.
Aleksandrova
LR
,
Phillips
AG
,
Wang
YT
.
Antidepressant effects of ketamine and the roles of AMPA glutamate receptors and other mechanisms beyond NMDA receptor antagonism
.
J Psychiatry Neurosci
.
2017
Jun
;
42
(
4
):
222
9
.
[PubMed]
1180-4882
12.
Geyer
MA
,
Markou
A
. Animal models of psychiatric disorders. In:
Bloom
FE
,
Kupfer
DJ
, editors
.
Psychopharmacology: The Fourth Generation of Progress
.
Raven Press
;
1995
. pp.
787
98
.
13.
Abelaira
HM
,
Réus
GZ
,
Quevedo
J
.
Animal models as tools to study the pathophysiology of depression
.
Br J Psychiatry
.
2013
;
35
Suppl 2
:
S112
20
.
[PubMed]
0007-1250
14.
Markou
A
,
Chiamulera
C
,
Geyer
MA
,
Tricklebank
M
,
Steckler
T
.
Removing obstacles in neuroscience drug discovery: the future path for animal models
.
Neuropsychopharmacology
.
2009
Jan
;
34
(
1
):
74
89
.
[PubMed]
0893-133X
15.
Belzung
C
.
Innovative drugs to treat depression: did animal models fail to be predictive or did clinical trials fail to detect effects?
Neuropsychopharmacology
.
2014
Apr
;
39
(
5
):
1041
51
.
[PubMed]
0893-133X
16.
Levinstein
MR
,
Samuels
BA
.
Mechanisms underlying the antidepressant response and treatment resistance
.
Front Behav Neurosci
.
2014
Jun
;
8
:
208
.
[PubMed]
1662-5153
17.
Jayatissa
MN
,
Bisgaard
C
,
Tingström
A
,
Papp
M
,
Wiborg
O
.
Hippocampal cytogenesis correlates to escitalopram-mediated recovery in a chronic mild stress rat model of depression
.
Neuropsychopharmacology
.
2006
Nov
;
31
(
11
):
2395
404
.
[PubMed]
0893-133X
18.
Der-Avakian
A
,
Mazei-Robison
MS
,
Kesby
JP
,
Nestler
EJ
,
Markou
A
.
Enduring deficits in brain reward function after chronic social defeat in rats: susceptibility, resilience, and antidepressant response
.
Biol Psychiatry
.
2014
Oct
;
76
(
7
):
542
9
.
[PubMed]
0006-3223
19.
Kitamura
Y
,
Araki
H
,
Gomita
Y
.
Influence of ACTH on the effects of imipramine, desipramine and lithium on duration of immobility of rats in the forced swim test
.
Pharmacol Biochem Behav
.
2002
Jan-Feb
;
71
(
1-2
):
63
9
.
[PubMed]
0091-3057
20.
Sukoff Rizzo
SJ
,
Neal
SJ
,
Hughes
ZA
,
Beyna
M
,
Rosenzweig-Lipson
S
,
Moss
SJ
, et al.
Evidence for sustained elevation of IL-6 in the CNS as a key contributor of depressive-like phenotypes
.
Transl Psychiatry
.
2012
Dec
;
2
(
12
):
e199
.
[PubMed]
2158-3188
21.
Cryan
JF
,
Mombereau
C
.
In search of a depressed mouse: utility of models for studying depression-related behavior in genetically modified mice
.
Mol Psychiatry
.
2004
Apr
;
9
(
4
):
326
57
.
[PubMed]
1359-4184
22.
Layer
RT
,
Popik
P
,
Olds
T
,
Skolnick
P
.
Antidepressant-like actions of the polyamine site NMDA antagonist, eliprodil (SL-82.0715)
.
Pharmacol Biochem Behav
.
1995
Nov
;
52
(
3
):
621
7
.
[PubMed]
0091-3057
23.
Przegaliński
E
,
Tatarczyńska
E
,
Dereń-Wesołek
A
,
Chojnacka-Wojcik
E
.
Antidepressant-like effects of a partial agonist at strychnine-insensitive glycine receptors and a competitive NMDA receptor antagonist
.
Neuropharmacology
.
1997
Jan
;
36
(
1
):
31
7
.
[PubMed]
0028-3908
24.
Zarate
CA
 Jr
,
Singh
JB
,
Carlson
PJ
,
Brutsche
NE
,
Ameli
R
,
Luckenbaugh
DA
, et al.
A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression
.
Arch Gen Psychiatry
.
2006
Aug
;
63
(
8
):
856
64
.
[PubMed]
0003-990X
25.
Vazquez
GH
,
Camino
S
,
Tondo
L
,
Baldessarini
RJ
.
Potential Novel Treatments for Bipolar Depression: Ketamine, Fatty Acids, Anti-inflammatory Agents, and Probiotics
.
CNS Neurol Disord Drug Targets
.
2017
;
16
(
8
):
858
69
.
[PubMed]
1996-3181
26.
Hirota
K
,
Lambert
DG
.
Ketamine: its mechanism(s) of action and unusual clinical uses
.
Br J Anaesth
.
1996
Oct
;
77
(
4
):
441
4
.
[PubMed]
0007-0912
27.
Maeng
S
,
Zarate
CA
 Jr
,
Du
J
,
Schloesser
RJ
,
McCammon
J
,
Chen
G
, et al.
Cellular mechanisms underlying the antidepressant effects of ketamine: role of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors
.
Biol Psychiatry
.
2008
Feb
;
63
(
4
):
349
52
.
[PubMed]
0006-3223
28.
Garcia
LS
,
Comim
CM
,
Valvassori
SS
,
Réus
GZ
,
Stertz
L
,
Kapczinski
F
, et al.
Ketamine treatment reverses behavioral and physiological alterations induced by chronic mild stress in rats
.
Prog Neuropsychopharmacol Biol Psychiatry
.
2009
Apr
;
33
(
3
):
450
5
.
[PubMed]
0278-5846
29.
Dwyer
JM
,
Duman
RS
.
Activation of mammalian target of rapamycin and synaptogenesis: role in the actions of rapid-acting antidepressants
.
Biol Psychiatry
.
2013
Jun
;
73
(
12
):
1189
98
.
[PubMed]
0006-3223
30.
Réus
GZ
,
Abelaira
HM
,
dos Santos
MA
,
Carlessi
AS
,
Tomaz
DB
,
Neotti
MV
, et al.
Ketamine and imipramine in the nucleus accumbens regulate histone deacetylation induced by maternal deprivation and are critical for associated behaviors
.
Behav Brain Res
.
2013
Nov
;
256
:
451
6
.
[PubMed]
0166-4328
31.
Réus
GZ
,
Nacif
MP
,
Abelaira
HM
,
Tomaz
DB
,
dos Santos
MA
,
Carlessi
AS
, et al.
Ketamine ameliorates depressive-like behaviors and immune alterations in adult rats following maternal deprivation
.
Neurosci Lett
.
2015
Jan
;
584
:
83
7
.
[PubMed]
0304-3940
32.
Réus
GZ
,
Carlessi
AS
,
Titus
SE
,
Abelaira
HM
,
Ignácio
ZM
,
da Luz
JR
, et al.
A single dose of S-ketamine induces long-term antidepressant effects and decreases oxidative stress in adulthood rats following maternal deprivation
.
Dev Neurobiol
.
2015
Nov
;
75
(
11
):
1268
81
.
[PubMed]
1932-8451
33.
Lindholm
JS
,
Autio
H
,
Vesa
L
,
Antila
H
,
Lindemann
L
,
Hoener
MC
, et al.
The antidepressant-like effects of glutamatergic drugs ketamine and AMPA receptor potentiator LY 451646 are preserved in bdnf⁺/⁻ heterozygous null mice
.
Neuropharmacology
.
2012
Jan
;
62
(
1
):
391
7
.
[PubMed]
0028-3908
34.
Autry
AE
,
Adachi
M
,
Nosyreva
E
,
Na
ES
,
Los
MF
,
Cheng
PF
, et al.
NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses
.
Nature
.
2011
Jun
;
475
(
7354
):
91
5
.
[PubMed]
0028-0836
35.
Réus
GZ
,
Stringari
RB
,
Ribeiro
KF
,
Ferraro
AK
,
Vitto
MF
,
Cesconetto
P
, et al.
Ketamine plus imipramine treatment induces antidepressant-like behavior and increases CREB and BDNF protein levels and PKA and PKC phosphorylation in rat brain
.
Behav Brain Res
.
2011
Aug
;
221
(
1
):
166
71
.
[PubMed]
0166-4328
36.
Wei
Z
,
Zhang
K
,
Zhou
Q
,
Huang
M
,
Xu
T
,
Dong
J
, et al.
Differential Mechanisms Underlying Antidepressant Responses of Ketamine and Imipramine
.
CNS Neurol Disord Drug Targets
.
2017
;
16
(
7
):
846
53
.
[PubMed]
1871-5273
37.
Li
N
,
Lee
B
,
Liu
RJ
,
Banasr
M
,
Dwyer
JM
,
Iwata
M
, et al.
mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists
.
Science
.
2010
Aug
;
329
(
5994
):
959
64
.
[PubMed]
0036-8075
38.
Abelaira
HM
,
Réus
GZ
,
Ignácio
ZM
,
Dos Santos
MA
,
de Moura
AB
,
Matos
D
, et al.
Effects of ketamine administration on mTOR and reticulum stress signaling pathways in the brain after the infusion of rapamycin into prefrontal cortex
.
J Psychiatr Res
.
2017
Apr
;
87
:
81
7
.
[PubMed]
0022-3956
39.
Abelaira
HM
,
Réus
GZ
,
Ignácio
ZM
,
Dos Santos
MA
,
de Moura
AB
,
Matos
D
, et al.
Ketamine Exhibits Different Neuroanatomical Profile After Mammalian Target of Rapamycin Inhibition in the Prefrontal Cortex: the Role of Inflammation and Oxidative Stress
.
Mol Neurobiol
.
2017
Sep
;
54
(
7
):
5335
46
.
[PubMed]
0893-7648
40.
Danysz
W
,
Parsons
CG
,
Kornhuber
J
,
Schmidt
WJ
,
Quack
G
.
Aminoadamantanes as NMDA receptor antagonists and antiparkinsonian agents—preclinical studies
.
Neurosci Biobehav Rev
.
1997
Jul
;
21
(
4
):
455
68
.
[PubMed]
0149-7634
41.
Emre
M
,
Mecocci
P
,
Stender
K
.
Pooled analyses on cognitive effects of memantine in patients with moderate to severe Alzheimer’s disease
.
J Alzheimers Dis
.
2008
Jun
;
14
(
2
):
193
9
.
[PubMed]
1387-2877
42.
Kornhuber
J
,
Weller
M
.
Psychotogenicity and N-methyl-D-aspartate receptor antagonism: implications for neuroprotective pharmacotherapy
.
Biol Psychiatry
.
1997
Jan
;
41
(
2
):
135
44
.
[PubMed]
0006-3223
43.
Lang
AE
,
Lozano
AM
.
Parkinson’s disease. First of two parts
.
N Engl J Med
.
1998
Oct
;
339
(
15
):
1044
53
.
[PubMed]
0028-4793
44.
Lang
AE
,
Lozano
AM
.
Parkinson’s disease. Second of two parts
.
N Engl J Med
.
1998
Oct
;
339
(
16
):
1130
43
.
[PubMed]
0028-4793
45.
Parsons
CG
,
Danysz
W
,
Quack
G
.
Memantine is a clinically well tolerated N-methyl-D-aspartate (NMDA) receptor antagonist—a review of preclinical data
.
Neuropharmacology
.
1999
Jun
;
38
(
6
):
735
67
.
[PubMed]
0028-3908
46.
Koukopoulos
A
,
Reginaldi
D
,
Serra
G
,
Koukopoulos
A
,
Sani
G
,
Serra
G
.
Antimanic and mood-stabilizing effect of memantine as an augmenting agent in treatment-resistant bipolar disorder
.
Bipolar Disord
.
2010
May
;
12
(
3
):
348
9
.
[PubMed]
1398-5647
47.
Ferguson
JM
,
Shingleton
RN
.
An open-label, flexible-dose study of memantine in major depressive disorder
.
Clin Neuropharmacol
.
2007
May-Jun
;
30
(
3
):
136
44
.
[PubMed]
0362-5664
48.
Zarate
CA
 Jr
,
Singh
JB
,
Quiroz
JA
,
De Jesus
G
,
Denicoff
KK
,
Luckenbaugh
DA
, et al.
A double-blind, placebo-controlled study of memantine in the treatment of major depression
.
Am J Psychiatry
.
2006
Jan
;
163
(
1
):
153
5
.
[PubMed]
0002-953X
49.
Réus
GZ
,
Stringari
RB
,
Kirsch
TR
,
Fries
GR
,
Kapczinski
F
,
Roesler
R
, et al.
Neurochemical and behavioural effects of acute and chronic memantine administration in rats: further support for NMDA as a new pharmacological target for the treatment of depression?
Brain Res Bull
.
2010
Apr
;
81
(
6
):
585
9
.
[PubMed]
0361-9230
50.
Papp
M
,
Gruca
P
,
Lason-Tyburkiewicz
M
,
Willner
P
.
Antidepressant, anxiolytic and procognitive effects of rivastigmine and donepezil in the chronic mild stress model in rats
.
Psychopharmacology (Berl)
.
2016
Apr
;
233
(
7
):
1235
43
.
[PubMed]
0033-3158
51.
Quan
MN
,
Zhang
N
,
Wang
YY
,
Zhang
T
,
Yang
Z
.
Possible antidepressant effects and mechanisms of memantine in behaviors and synaptic plasticity of a depression rat model
.
Neuroscience
.
2011
May
;
182
:
88
97
.
[PubMed]
0306-4522
52.
Marvanová
M
,
Lakso
M
,
Pirhonen
J
,
Nawa
H
,
Wong
G
,
Castrén
E
.
The neuroprotective agent memantine induces brain-derived neurotrophic factor and trkB receptor expression in rat brain
.
Mol Cell Neurosci
.
2001
Sep
;
18
(
3
):
247
58
.
[PubMed]
1044-7431
53.
Amidfar
M
,
Réus
GZ
,
Quevedo
J
,
Kim
YK
,
Arbabi
M
.
Effect of co-administration of memantine and sertraline on the antidepressant-like activity and brain-derived neurotrophic factor (BDNF) levels in the rat brain
.
Brain Res Bull
.
2017
Jan
;
128
:
29
33
.
[PubMed]
0361-9230
54.
Rogóz
Z
,
Skuza
G
,
Legutko
B
.
Repeated co-treatment with fluoxetine and amantadine induces brain-derived neurotrophic factor gene expression in rats
.
Pharmacol Rep
.
2008
Nov-Dec
;
60
(
6
):
817
26
.
[PubMed]
1734-1140
55.
Szakacs
R
,
Janka
Z
,
Kalman
J
.
The “blue” side of glutamatergic neurotransmission: NMDA receptor antagonists as possible novel therapeutics for major depression
.
Neuropsychopharmacol Hung
.
2012
Mar
;
14
(
1
):
29
40
.
[PubMed]
1419-8711
56.
Amidfar
M
,
Khiabany
M
,
Kohi
A
,
Salardini
E
,
Arbabi
M
,
Roohi Azizi
M
, et al.
Effect of memantine combination therapy on symptoms in patients with moderate-to-severe depressive disorder: randomized, double-blind, placebo-controlled study
.
J Clin Pharm Ther
.
2017
Feb
;
42
(
1
):
44
50
.
[PubMed]
0269-4727
57.
Szewczyk
B
,
Pałucha-Poniewiera
A
,
Poleszak
E
,
Pilc
A
,
Nowak
G
.
Investigational NMDA receptor modulators for depression
.
Expert Opin Investig Drugs
.
2012
Jan
;
21
(
1
):
91
102
.
[PubMed]
1354-3784
58.
Cheer
SM
,
Wagstaff
AJ
.
Quetiapine. A review of its use in the management of schizophrenia
.
CNS Drugs
.
2004
;
18
(
3
):
173
99
.
[PubMed]
1172-7047
59.
Nelson
JC
,
Papakostas
GI
.
Atypical antipsychotic augmentation in major depressive disorder: a meta-analysis of placebo-controlled randomized trials
.
Am J Psychiatry
.
2009
Sep
;
166
(
9
):
980
91
.
[PubMed]
0002-953X
60.
Pae
CU
,
Sohi
MS
,
Seo
HJ
,
Serretti
A
,
Patkar
AA
,
Steffens
DC
, et al.
Quetiapine XR: current status for the treatment of major depressive disorder
.
Prog Neuropsychopharmacol Biol Psychiatry
.
2010
Oct
;
34
(
7
):
1165
73
.
[PubMed]
0278-5846
61.
Zhou
X
,
Keitner
GI
,
Qin
B
,
Ravindran
AV
,
Bauer
M
,
Del Giovane
C
, et al.
Atypical antipsychotic augmentation for treatment-resistant depression: a systematic review and network meta-analysis
.
Int J Neuropsychopharmacol
.
2015
May
;
18
(
11
):
pyv060
.
[PubMed]
1461-1457
62.
Maan
JS
,
Saadabadi
A
.
Quetiapine
.
Treasure Island (FL)
:
StatPearls Publishing
;
2017
.
63.
Blier
P
,
Blondeau
C
.
Neurobiological bases and clinical aspects of the use of aripiprazole in treatment-resistant major depressive disorder
.
J Affect Disord
.
2011
Jan
;
128
Suppl 1
:
S3
10
.
[PubMed]
0165-0327
64.
Cross
AJ
,
Widzowski
D
,
Maciag
C
,
Zacco
A
,
Hudzik
T
,
Liu
J
, et al.
Quetiapine and its metabolite norquetiapine: translation from in vitro pharmacology to in vivo efficacy in rodent models
.
Br J Pharmacol
.
2016
Jan
;
173
(
1
):
155
66
.
[PubMed]
0007-1188
65.
Kropp
S
,
Kern
V
,
Lange
K
,
Degner
D
,
Hajak
G
,
Kornhuber
J
, et al.
Oxidative stress during treatment with first- and second-generation antipsychotics
.
J Neuropsychiatry Clin Neurosci
.
2005
;
17
(
2
):
227
31
.
[PubMed]
0895-0172
66.
Ignácio
ZM
,
Réus
GZ
,
Abelaira
HM
,
de Moura
AB
,
de Souza
TG
,
Matos
D
, et al.
Acute and chronic treatment with quetiapine induces antidepressant-like behavior and exerts antioxidant effects in the rat brain
.
Metab Brain Dis
.
2017
Aug
;
32
(
4
):
1195
208
.
[PubMed]
0885-7490
67.
Wang
Y
,
Chang
T
,
Chen
YC
,
Zhang
RG
,
Wang
HN
,
Wu
WJ
, et al.
Quetiapine add-on therapy improves the depressive behaviors and hippocampal neurogenesis in fluoxetine treatment resistant depressive rats
.
Behav Brain Res
.
2013
Sep
;
253
:
206
11
.
[PubMed]
0166-4328
68.
Di Benedetto
B
,
Kühn
R
,
Nothdurfter
C
,
Rein
T
,
Wurst
W
,
Rupprecht
R
.
N-desalkylquetiapine activates ERK1/2 to induce GDNF release in C6 glioma cells: a putative cellular mechanism for quetiapine as antidepressant
.
Neuropharmacology
.
2012
Jan
;
62
(
1
):
209
16
.
[PubMed]
0028-3908
69.
Chen
YH
,
Zhang
RG
,
Xue
F
,
Wang
HN
,
Chen
YC
,
Hu
GT
, et al.
Quetiapine and repetitive transcranial magnetic stimulation ameliorate depression-like behaviors and up-regulate the proliferation of hippocampal-derived neural stem cells in a rat model of depression: the involvement of the BDNF/ERK signal pathway
.
Pharmacol Biochem Behav
.
2015
Sep
;
136
:
39
46
.
[PubMed]
0091-3057
70.
Stirling
DP
,
Koochesfahani
KM
,
Steeves
JD
,
Tetzlaff
W
.
Minocycline as a neuroprotective agent
.
Neuroscientist
.
2005
Aug
;
11
(
4
):
308
22
.
[PubMed]
1073-8584
71.
Elewa
HF
,
Hilali
H
,
Hess
DC
,
Machado
LS
,
Fagan
SC
.
Minocycline for short-term neuroprotection
.
Pharmacotherapy
.
2006
Apr
;
26
(
4
):
515
21
.
[PubMed]
0277-0008
72.
Sapadin
AN
,
Fleischmajer
R
.
Tetracyclines: nonantibiotic properties and their clinical implications
.
J Am Acad Dermatol
.
2006
Feb
;
54
(
2
):
258
65
.
[PubMed]
0190-9622
73.
Plane
JM
,
Shen
Y
,
Pleasure
DE
,
Deng
W
.
Prospects for minocycline neuroprotection
.
Arch Neurol
.
2010
Dec
;
67
(
12
):
1442
8
.
[PubMed]
0003-9942
74.
Ghazali
FH
,
Wu
W
,
Abdullah
JM
.
Histological analysis of motoneuron survival and microglia inhibition after nerve root avulsion treated with nerve graft implantation and minocycline: an experimental study
.
Sains Malays
.
2016
;
45
:
1641
8
.0126-6039
75.
Chin
TY
,
Kiat
SS
,
Faizul
HG
,
Wu
W
,
Abdullah
JM
.
The effects of minocycline on spinal root avulsion injury in rat model
.
Malays J Med Sci
.
2017
Mar
;
24
(
1
):
31
9
.
[PubMed]
1394-195X
76.
Lee
SM
,
Yune
TY
,
Kim
SJ
,
Park
DW
,
Lee
YK
,
Kim
YC
, et al.
Minocycline reduces cell death and improves functional recovery after traumatic spinal cord injury in the rat
.
J Neurotrauma
.
2003
Oct
;
20
(
10
):
1017
27
.
[PubMed]
0897-7151
77.
Amin
AR
,
Attur
MG
,
Thakker
GD
,
Patel
PD
,
Vyas
PR
,
Patel
RN
, et al.
A novel mechanism of action of tetracyclines: effects on nitric oxide synthases
.
Proc Natl Acad Sci USA
.
1996
Nov
;
93
(
24
):
14014
9
.
[PubMed]
0027-8424
78.
Pi
R
,
Li
W
,
Lee
NT
,
Chan
HH
,
Pu
Y
,
Chan
LN
, et al.
Minocycline prevents glutamate-induced apoptosis of cerebellar granule neurons by differential regulation of p38 and Akt pathways
.
J Neurochem
.
2004
Dec
;
91
(
5
):
1219
30
.
[PubMed]
0022-3042
79.
Garcia-Martinez
EM
,
Sanz-Blasco
S
,
Karachitos
A
,
Bandez
MJ
,
Fernandez-Gomez
FJ
,
Perez-Alvarez
S
, et al.
Mitochondria and calcium flux as targets of neuroprotection caused by minocycline in cerebellar granule cells
.
Biochem Pharmacol
.
2010
Jan
;
79
(
2
):
239
50
.
[PubMed]
0006-2952
80.
Teng
YD
,
Choi
H
,
Onario
RC
,
Zhu
S
,
Desilets
FC
,
Lan
S
, et al.
Minocycline inhibits contusion-triggered mitochondrial cytochrome c release and mitigates functional deficits after spinal cord injury
.
Proc Natl Acad Sci USA
.
2004
Mar
;
101
(
9
):
3071
6
.
[PubMed]
0027-8424
81.
Stirling
DP
,
Khodarahmi
K
,
Liu
J
,
McPhail
LT
,
McBride
CB
,
Steeves
JD
, et al.
Minocycline treatment reduces delayed oligodendrocyte death, attenuates axonal dieback, and improves functional outcome after spinal cord injury
.
J Neurosci
.
2004
Mar
;
24
(
9
):
2182
90
.
[PubMed]
0270-6474
82.
Takeda
M
,
Kawaguchi
M
,
Kumatoriya
T
,
Horiuchi
T
,
Watanabe
K
,
Inoue
S
, et al.
Effects of minocycline on hind-limb motor function and gray and white matter injury after spinal cord ischemia in rats
.
Spine
.
2011
Nov
;
36
(
23
):
1919
24
.
[PubMed]
0362-2436
83.
Wasserman
JK
,
Schlichter
LC
.
Minocycline protects the blood-brain barrier and reduces edema following intracerebral hemorrhage in the rat
.
Exp Neurol
.
2007
Oct
;
207
(
2
):
227
37
.
[PubMed]
0014-4886
84.
Skolnick
P
.
Beyond monoamine-based therapies: clues to new approaches
.
J Clin Psychiatry
.
2002
;
63
Suppl 2
:
19
23
.
[PubMed]
0160-6689
85.
Pae
CU
,
Marks
DM
,
Han
C
,
Patkar
AA
.
Does minocycline have antidepressant effect?
Biomed Pharmacother
.
2008
Jun
;
62
(
5
):
308
11
.
[PubMed]
0753-3322
86.
Maes
M
.
Evidence for an immune response in major depression: a review and hypothesis
.
Prog Neuropsychopharmacol Biol Psychiatry
.
1995
Jan
;
19
(
1
):
11
38
.
[PubMed]
0278-5846
87.
Herken
H
,
Gurel
A
,
Selek
S
,
Armutcu
F
,
Ozen
ME
,
Bulut
M
, et al.
Adenosine deaminase, nitric oxide, superoxide dismutase, and xanthine oxidase in patients with major depression: impact of antidepressant treatment
.
Arch Med Res
.
2007
Feb
;
38
(
2
):
247
52
.
[PubMed]
0188-4409
88.
Réus
GZ
,
Abelaira
HM
,
Maciel
AL
,
Dos Santos
MA
,
Carlessi
AS
,
Steckert
AV
, et al.
Minocycline protects against oxidative damage and alters energy metabolism parameters in the brain of rats subjected to chronic mild stress
.
Metab Brain Dis
.
2015
Apr
;
30
(
2
):
545
53
.
[PubMed]
0885-7490
89.
Wang
HT
,
Huang
FL
,
Hu
ZL
,
Zhang
WJ
,
Qiao
XQ
,
Huang
YQ
, et al.
Early-Life Social Isolation-Induced Depressive-Like Behavior in Rats Results in Microglial Activation and Neuronal Histone Methylation that Are Mitigated by Minocycline
.
Neurotox Res
.
2017
May
;
31
(
4
):
505
20
.
[PubMed]
1029-8428
90.
Soczynska
JK
,
Mansur
RB
,
Brietzke
E
,
Swardfager
W
,
Kennedy
SH
,
Woldeyohannes
HO
, et al.
Novel therapeutic targets in depression: minocycline as a candidate treatment
.
Behav Brain Res
.
2012
Dec
;
235
(
2
):
302
17
.
[PubMed]
0166-4328
91.
Young
W
.
Review of lithium effects on brain and blood
.
Cell Transplant
.
2009
;
18
(
9
):
951
75
.
[PubMed]
0963-6897
92.
Dunner
DL
.
Drug interactions of lithium and other antimanic/mood-stabilizing medications
.
J Clin Psychiatry
.
2003
;
64
Suppl 5
:
38
43
.
[PubMed]
0160-6689
93.
Bauer
M
,
Whybrow
PC
,
Angst
J
,
Versiani
M
,
Möller
HJ
;
World Federation of Societies of Biological Psychiatry (WFSBF) Task Force on Treatment Guidelines for Unipolar Depressive Disorders
.
World Federation of Societies of Biological Psychiatry (WFSBP) Guidelines for Biological Treatment of Unipolar Depressive Disorders, Part 2: maintenance treatment of major depressive disorder and treatment of chronic depressive disorders and subthreshold depressions
.
World J Biol Psychiatry
.
2002
Apr
;
3
(
2
):
69
86
.
[PubMed]
1562-2975
94.
Guzzetta
F
,
Tondo
L
,
Centorrino
F
,
Baldessarini
RJ
.
Lithium treatment reduces suicide risk in recurrent major depressive disorder
.
J Clin Psychiatry
.
2007
Mar
;
68
(
3
):
380
3
.
[PubMed]
0160-6689
95.
Smith
DF
.
Lithium and motor activity of animals: effects and possible mechanism of action
.
Int Pharmacopsychiatry
.
1980
;
15
(
4
):
197
217
.
[PubMed]
0020-8272
96.
Patel
S
,
Martínez-Ripoll
M
,
Blundell
TL
,
Albert
A
.
Structural enzymology of Li(+)-sensitive/Mg(2+)-dependent phosphatases
.
J Mol Biol
.
2002
Jul
;
320
(
5
):
1087
94
.
[PubMed]
0022-2836
97.
Grimes
CA
,
Jope
RS
.
The multifaceted roles of glycogen synthase kinase 3beta in cellular signaling
.
Prog Neurobiol
.
2001
Nov
;
65
(
4
):
391
426
.
[PubMed]
0301-0082
98.
Sinha
D
,
Wang
Z
,
Ruchalski
KL
,
Levine
JS
,
Krishnan
S
,
Lieberthal
W
, et al.
Lithium activates the Wnt and phosphatidylinositol 3-kinase Akt signaling pathways to promote cell survival in the absence of soluble survival factors
.
Am J Physiol Renal Physiol
.
2005
Apr
;
288
(
4
):
F703
13
.
[PubMed]
1931-857X
99.
Stieglitz
KA
,
Johnson
KA
,
Yang
H
,
Roberts
MF
,
Seaton
BA
,
Head
JF
, et al.
Crystal structure of a dual activity IMPase/FBPase (AF2372) from Archaeoglobus fulgidus. The story of a mobile loop
.
J Biol Chem
.
2002
Jun
;
277
(
25
):
22863
74
.
[PubMed]
0021-9258
100.
Eroğlu
L
,
Hizal
A
.
Antidepressant action of lithium in behavioral despair test
.
Pol J Pharmacol Pharm
.
1987
Nov-Dec
;
39
(
6
):
667
73
.
[PubMed]
0301-0244
101.
Redrobe
JP
,
Bourin
M
,
Colombel
MC
,
Baker
GB
.
Dose-dependent noradrenergic and serotonergic properties of venlafaxine in animal models indicative of antidepressant activity
.
Psychopharmacology (Berl)
.
1998
Jul
;
138
(
1
):
1
8
.
[PubMed]
0033-3158
102.
Shaldubina
A
,
Johanson
RA
,
O’Brien
WT
,
Buccafusca
R
,
Agam
G
,
Belmaker
RH
, et al.
SMIT1 haploinsufficiency causes brain inositol deficiency without affecting lithium-sensitive behavior
.
Mol Genet Metab
.
2006
Aug
;
88
(
4
):
384
8
.
[PubMed]
1096-7192
103.
Bersudsky
Y
,
Shaldubina
A
,
Belmaker
RH
.
Lithium’s effect in forced-swim test is blood level dependent but not dependent on weight loss
.
Behav Pharmacol
.
2007
Feb
;
18
(
1
):
77
80
.
[PubMed]
0955-8810
104.
Cryns
K
,
Shamir
A
,
Shapiro
J
,
Daneels
G
,
Goris
I
,
Van Craenendonck
H
, et al.
Lack of lithium-like behavioral and molecular effects in IMPA2 knockout mice
.
Neuropsychopharmacology
.
2007
Apr
;
32
(
4
):
881
91
.
[PubMed]
0893-133X
105.
Gould
TD
,
Einat
H
,
O’Donnell
KC
,
Picchini
AM
,
Schloesser
RJ
,
Manji
HK
.
Beta-catenin overexpression in the mouse brain phenocopies lithium-sensitive behaviors
.
Neuropsychopharmacology
.
2007
Oct
;
32
(
10
):
2173
83
.
[PubMed]
0893-133X
106.
Mohseni
G
,
Ostadhadi
S
,
Imran-Khan
M
,
Norouzi-Javidan
A
,
Zolfaghari
S
,
Haddadi
NS
, et al.
Agmatine enhances the antidepressant-like effect of lithium in mouse forced swimming test through NMDA pathway
.
Biomed Pharmacother
.
2017
Apr
;
88
:
931
8
.
[PubMed]
0753-3322
107.
Nelson
JC
,
Baumann
P
,
Delucchi
K
,
Joffe
R
,
Katona
C
.
A systematic review and meta-analysis of lithium augmentation of tricyclic and second generation antidepressants in major depression
.
J Affect Disord
.
2014
Oct
;
168
:
269
75
.
[PubMed]
0165-0327
108.
Meduna
L
.
New methods of medical treatment of schizophrenia
.
Arch Neurol Psychiatry
.
1936
;
35
(
2
):
36
63
. 0096-6754
109.
Rasmussen
KG
.
Sham electroconvulsive therapy studies in depressive illness: a review of the literature and consideration of the placebo phenomenon in electroconvulsive therapy practice
.
J ECT
.
2009
Mar
;
25
(
1
):
54
9
.
[PubMed]
1095-0680
110.
Beale
MD
,
Kellner
CH
.
ECT in treatment algorithms: no need to save the best for last
.
J ECT
.
2000
Mar
;
16
(
1
):
1
2
.
[PubMed]
1095-0680
111.
Katz
RJ
.
Animal model of depression: effects of electroconvulsive shock therapy
.
Neurosci Biobehav Rev
.
1981
;
5
(
2
):
273
7
.
[PubMed]
0149-7634
112.
Merkl
A
,
Heuser
I
,
Bajbouj
M
.
Antidepressant electroconvulsive therapy: mechanism of action, recent advances and limitations
.
Exp Neurol
.
2009
Sep
;
219
(
1
):
20
6
.
[PubMed]
0014-4886
113.
Sackeim
HA
,
Decina
P
,
Prohovnik
I
,
Malitz
S
,
Resor
SR
.
Anticonvulsant and antidepressant properties of electroconvulsive therapy: a proposed mechanism of action
.
Biol Psychiatry
.
1983
Nov
;
18
(
11
):
1301
10
.
[PubMed]
0006-3223
114.
Green
AR
,
Vincent
ND
.
The effect of repeated electroconvulsive shock on GABA synthesis and release in regions of rat brain
.
Br J Pharmacol
.
1987
Sep
;
92
(
1
):
19
24
.
[PubMed]
0007-1188
115.
Li
B
,
Suemaru
K
,
Cui
R
,
Kitamura
Y
,
Gomita
Y
,
Araki
H
.
Repeated electroconvulsive stimuli increase brain-derived neurotrophic factor in ACTH-treated rats
.
Eur J Pharmacol
.
2006
Jan
;
529
(
1-3
):
114
21
.
[PubMed]
0014-2999
116.
Perez-Caballero
L
,
Pérez-Egea
R
,
Romero-Grimaldi
C
,
Puigdemont
D
,
Molet
J
,
Caso
JR
, et al.
Early responses to deep brain stimulation in depression are modulated by anti-inflammatory drugs
.
Mol Psychiatry
.
2014
May
;
19
(
5
):
607
14
.
[PubMed]
1359-4184
117.
Sartorius
A
,
Kiening
KL
,
Kirsch
P
,
von Gall
CC
,
Haberkorn
U
,
Unterberg
AW
, et al.
Remission of major depression under deep brain stimulation of the lateral habenula in a therapy-refractory patient
.
Biol Psychiatry
.
2010
Jan
;
67
(
2
):
e9
11
.
[PubMed]
0006-3223
118.
Kim
Y
,
Morath
B
,
Hu
C
,
Byrne
LK
,
Sutor
SL
,
Frye
MA
, et al.
Antidepressant actions of lateral habenula deep brain stimulation differentially correlate with CaMKII/GSK3/AMPK signaling locally and in the infralimbic cortex
.
Behav Brain Res
.
2016
Jun
;
306
:
170
7
.
[PubMed]
0166-4328
119.
Dandekar
MP
,
Luse
D
,
Hoffmann
C
,
Cotton
P
,
Peery
T
,
Ruiz
C
, et al.
Increased dopamine receptor expression and anti-depressant response following deep brain stimulation of the medial forebrain bundle
.
J Affect Disord
.
2017
Aug
;
217
:
80
8
.
[PubMed]
0165-0327
120.
Furlanetti
LL
,
Coenen
VA
,
Aranda
IA
,
Döbrössy
MD
.
Chronic deep brain stimulation of the medial forebrain bundle reverses depressive-like behavior in a hemiparkinsonian rodent model
.
Exp Brain Res
.
2015
Nov
;
233
(
11
):
3073
85
.
[PubMed]
0014-4819
121.
Rummel
J
,
Voget
M
,
Hadar
R
,
Ewing
S
,
Sohr
R
,
Klein
J
, et al.
Testing different paradigms to optimize antidepressant deep brain stimulation in different rat models of depression
.
J Psychiatr Res
.
2016
Oct
;
81
:
36
45
.
[PubMed]
0022-3956
122.
Li
B
,
Piriz
J
,
Mirrione
M
,
Chung
C
,
Proulx
CD
,
Schulz
D
, et al.
Synaptic potentiation onto habenula neurons in the learned helplessness model of depression
.
Nature
.
2011
Feb
;
470
(
7335
):
535
9
.
[PubMed]
0028-0836
123.
Hamani
C
,
Amorim
BO
,
Wheeler
AL
,
Diwan
M
,
Driesslein
K
,
Covolan
L
, et al.
Deep brain stimulation in rats: different targets induce similar antidepressant-like effects but influence different circuits
.
Neurobiol Dis
.
2014
Nov
;
71
:
205
14
.
[PubMed]
0969-9961
124.
Rea
E
,
Rummel
J
,
Schmidt
TT
,
Hadar
R
,
Heinz
A
,
Mathé
AA
, et al.
Anti-anhedonic effect of deep brain stimulation of the prefrontal cortex and the dopaminergic reward system in a genetic rat model of depression: an intracranial self-stimulation paradigm study
.
Brain Stimul
.
2014
Jan-Feb
;
7
(
1
):
21
8
.
[PubMed]
1935-861X
125.
Laver
B
,
Diwan
M
,
Nobrega
JN
,
Hamani
C
.
Augmentative therapies do not potentiate the antidepressant-like effects of deep brain stimulation in rats
.
J Affect Disord
.
2014
Jun
;
161
:
87
90
.
[PubMed]
0165-0327
126.
Schmuckermair
C
,
Gaburro
S
,
Sah
A
,
Landgraf
R
,
Sartori
SB
,
Singewald
N
.
Behavioral and neurobiological effects of deep brain stimulation in a mouse model of high anxiety- and depression-like behavior
.
Neuropsychopharmacology
.
2013
Jun
;
38
(
7
):
1234
44
.
[PubMed]
0893-133X
127.
Jiménez-Sánchez
L
,
Castañé
A
,
Pérez-Caballero
L
,
Grifoll-Escoda
M
,
López-Gil
X
,
Campa
L
, et al.
Activation of AMPA receptors mediates the antidepressant action of deep brain stimulation of the infralimbic prefrontal cortex
.
Cereb Cortex
.
2016
Jun
;
26
(
6
):
2778
89
.
[PubMed]
1047-3211
128.
Settell
ML
,
Testini
P
,
Cho
S
,
Lee
JH
,
Blaha
CD
,
Jo
HJ
, et al.
Functional circuit effect of ventral tegmental area deep brain stimulation: imaging and neurochemical evidence of mesocortical and mesolimbic pathway modulation
.
Front Neurosci
.
2017
Mar
;
11
:
104
.
[PubMed]
1662-4548
129.
Kim
Y
,
McGee
S
,
Czeczor
JK
,
Walker
AJ
,
Kale
RP
,
Kouzani
AZ
, et al.
Nucleus accumbens deep-brain stimulation efficacy in ACTH-pretreated rats: alterations in mitochondrial function relate to antidepressant-like effects
.
Transl Psychiatry
.
2016
Jun
;
6
(
6
):
e842
.
[PubMed]
2158-3188
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.