Schizophrenia and other neuropsychiatric disorders await mechanism-associated interventions. Excess oxidative stress is increasingly appreciated to participate in the pathophysiology of brain disorders, and decreases in the major antioxidant, glutathione (GSH), have been reported in multiple studies. Technical cautions regarding the estimation of oxidative stress-related changes in the brain via imaging techniques have led investigators to explore peripheral GSH as a possible pathological signature of oxidative stress-associated brain changes. In a preclinical model of GSH deficiency, we found a correlation between whole brain and peripheral GSH levels. We found that the naturally occurring isothiocyanate sulforaphane increased blood GSH levels in healthy human subjects following 7 days of daily oral administration. In parallel, we explored the potential influence of sulforaphane on brain GSH levels in the anterior cingulate cortex, hippocampus, and thalamus via 7-T magnetic resonance spectroscopy. A significant positive correlation between blood and thalamic GSH post- and pre-sulforaphane treatment ratios was observed, in addition to a consistent increase in brain GSH levels in response to treatment. This clinical pilot study suggests the value of exploring relationships between peripheral GSH and clinical/neuropsychological measures, as well as the influences sulforaphane has on functional measures that are altered in neuropsychiatric disorders.

1.
Stadler K: Oxidative stress in diabetes. Adv Exp Med Biol 2012; 771: 272–287.
2.
De Marchi E, Baldassari F, Bononi A, Wiec-kowski MR, Pinton P: Oxidative stress in cardiovascular diseases and obesity: role of p66Shc and protein kinase C. Oxid Med Cell Longev 2013; 2013: 564961.
3.
Martinez-Useros J, Li W, Cabeza-Morales M, Garcia-Foncillas J: Oxidative stress: a new target for pancreatic cancer prognosis and treatment. J Clin Med 2017; 6:E29.
4.
Perry G, Sayre LM, Atwood CS, Castellani RJ, Cash AD, Rottkamp CA, Smith MA: The role of iron and copper in the aetiology of neurodegenerative disorders: therapeutic implications. CNS Drugs 2002; 16: 339–352.
5.
Dias V, Junn E, Mouradian MM: The role of oxidative stress in Parkinson’s disease. J Parkinsons Dis 2013; 3: 461–491.
6.
Koga M, Serritella AV, Sawa A, Sedlak TW: Implications for reactive oxygen species in schizophrenia pathogenesis. Schizophr Res 2016; 176: 52–71.
7.
Kulak A, Steullet P, Cabungcal JH, Werge T, Ingason A, Cuenod M, Do KQ: Redox dysregulation in the pathophysiology of schizophrenia and bipolar disorder: insights from animal models. Antioxid Redox Signal 2013; 18: 1428–1443.
8.
Landek-Salgado MA, Faust TE, Sawa A: Molecular substrates of schizophrenia: homeostatic signaling to connectivity. Mol Psychiatry 2016; 21: 10–28.
9.
Owen MJ, Sawa A, Mortensen PB: Schizophrenia. Lancet 2016; 388: 86–97.
10.
Smeyne M, Smeyne RJ: Glutathione metabolism and Parkinson’s disease. Free Radic Biol Med 2013; 62: 13–25.
11.
Shimizu H, Kiyohara Y, Kato I, Kitazono T, Tanizaki Y, Kubo M, Ueno H, Ibayashi S, Fujishima M, Iida M: Relationship between plasma glutathione levels and cardiovascular disease in a defined population: the Hisayama study. Stroke 2004; 35: 2072–2077.
12.
Johnson WM, Wilson-Delfosse AL, Mieyal JJ: Dysregulation of glutathione homeostasis in neurodegenerative diseases. Nutrients 2012; 4: 1399–1440.
13.
Ballatori N, Krance SM, Notenboom S, Shi S, Tieu K, Hammond CL: Glutathione dysregulation and the etiology and progression of human diseases. Biol Chem 2009; 390: 191–214.
14.
Coughlin JM, Hayes LN, Tanaka T, Xiao M, Yolken RH, Worley P, Leweke FM, Sawa A: Reduced superoxide dismutase-1 (SOD1) in cerebrospinal fluid of patients with early psychosis in association with clinical features. Schizophr Res 2017; 183: 64–69.
15.
Coughlin JM, Ishizuka K, Kano SI, Edwards JA, Seifuddin FT, Shimano MA, Daley EL, Zandi PP, Leweke FM, Cascella NG, Pomper MG, Yolken RH, Sawa A: Marked reduction of soluble superoxide dismutase-1 (SOD1) in cerebrospinal fluid of patients with recent-onset schizophrenia. Mol Psychiatry 2013; 18: 10–11.
16.
Coughlin JM, Wang Y, Ambinder EB, Ward RE, Minn I, Vranesic M, Kim PK, Ford CN, Higgs C, Hayes LN, Schretlen DJ, Dannals RF, Kassiou M, Sawa A, Pomper MG: In vivo markers of inflammatory response in recent-onset schizophrenia: a combined study using [11C]DPA-713 PET and analysis of CSF and plasma. Transl Psychiatry 2016; 6:e777.
17.
Hayes LN, Severance EG, Leek JT, Gressitt KL, Rohleder C, Coughlin JM, Leweke FM, Yolken RH, Sawa A: Inflammatory molecular signature associated with infectious agents in psychosis. Schizophr Bull 2014; 40: 963–972.
18.
Nucifora LG, Tanaka T, Hayes LN, Kim M, Lee BJ, Matsuda T, Nucifora FC Jr, Sedlak T, Mojtabai R, Eaton W, Sawa A: Reduction of plasma glutathione in psychosis associated with schizophrenia and bipolar disorder in translational psychiatry. Transl Psychiatry 2017; 7:e1215.
19.
Do KQ, Trabesinger AH, Kirsten-Krüger M, Lauer CJ, Dydak U, Hell D, Holsboer F, Boesiger P, Cuenod M: Schizophrenia: glutathione deficit in cerebrospinal fluid and prefrontal cortex in vivo. Eur J Neurosci 2000; 12: 3721–3728.
20.
Wu JQ, Chen DC, Tan YL, Tan S, Wang Z, Yang F, Soares JC, Zhang XY: Association of altered CuZn superoxide dismutase and cognitive impairment in schizophrenia patients with tardive dyskinesia. J Psychiatr Res 2014; 58: 167–174.
21.
Wu Z, Zhang XY, Wang H, Tang W, Xia Y, Zhang F, Liu J, Fu Y, Hu J, Chen Y, Liu L, Chen DC, Xiu MH, Kosten TR, He J: Elevated plasma superoxide dismutase in first-episode and drug naive patients with schizophrenia: inverse association with positive symptoms. Prog Neuropsychopharmacol Biol Psychiatry 2012; 36: 34–38.
22.
Isgren A, Sellgren C, Ekman CJ, Holmén-Larsson J, Blennow K, Zetterberg H, Jakobs-son J, Landén M: Markers of neuroinflammation and neuronal injury in bipolar disorder: relation to prospective clinical outcomes. Brain Behav Immun 2017; 65: 195–201.
23.
Flatow J, Buckley P, Miller BJ: Meta-analysis of oxidative stress in schizophrenia. Biol Psychiatry 2013; 74: 400–409.
24.
Altuntas I, Aksoy H, Coskun I, Çayköylü A, Akçay F: Erythrocyte superoxide dismutase and glutathione peroxidase activities, and malondialdehyde and reduced glutathione levels in schizophrenic patients. Clin Chem Lab Med 2000; 38: 1277–1281.
25.
Dietrich-Muszalska A, Olas B, Glowacki R, Bald E: Oxidative/nitrative modifications of plasma proteins and thiols from patients with schizophrenia. Neuropsychobiology 2009; 59: 1–7.
26.
Micó JA, Rojas-Corrales MO, Gibert-Rahola J, Parellada M, Moreno D, Fraguas D, Graell M, Gil J, Irazusta J, Castro-Fornieles J, Soutullo C, Arango C, Otero S, Navarro A, Baeza I, Martínez-Cengotitabengoa M, González-Pinto A: Reduced antioxidant defense in early onset first-episode psychosis: a case-control study. BMC Psychiatry 2011; 11: 26.
27.
Raffa M, Atig F, Mhalla A, Kerkeni A, Mechri A: Decreased glutathione levels and impaired antioxidant enzyme activities in drug-naive first-episode schizophrenic patients. BMC Psychiatry 2011; 11: 124.
28.
Raffa M, Mechri A, Othman LB, Fendri C, Gaha L, Kerkeni A: Decreased glutathione levels and antioxidant enzyme activities in untreated and treated schizophrenic patients. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33: 1178–1183.
29.
Lavoie S, Berger M, Schlögelhofer M, Schäfer MR, Rice S, Kim SW, Hesse J, McGorry PD, Smesny S, Amminger GP: Erythrocyte glutathione levels as long-term predictor of transition to psychosis. Transl Psychiatry 2017; 7: e1064.
30.
Wijtenburg SA, Yang S, Fischer BA, Rowland LM: In vivo assessment of neurotransmitters and modulators with magnetic resonance spectroscopy: application to schizophrenia. Neurosci Biobehav Rev 2015; 51: 276–295.
31.
Brandt AS, Unschuld PG, Pradhan S, Lim IA, Churchill G, Harris AD, Hua J, Barker PB, Ross CA, van Zijl PC, Edden RA, Margolis RL: Age-related changes in anterior cingulate cortex glutamate in schizophrenia: a 1H MRS study at 7 tesla. Schizophr Res 2016; 172: 101–105.
32.
Rowland LM, Pradhan S, Korenic S, Wijtenburg SA, Hong LE, Edden RA, Barker PB: Elevated brain lactate in schizophrenia: a 7 T magnetic resonance spectroscopy study. Transl Psychiatry 2016; 6:e967.
33.
Taylor R, Neufeld RW, Schäfer B, Densmore M, Rajakumar N, Osuch EA, Williamson PC, Théberge J: Functional magnetic resonance spectroscopy of glutamate in schizophrenia and major depressive disorder: anterior cingulate activity during a color-word Stroop task. NPJ Schizophr 2015; 1: 15028.
34.
Thakkar KN, Rösler L, Wijnen JP, Boer VO, Klomp DW, Cahn W, Kahn RS, Neggers SF: 7T proton magnetic resonance spectroscopy of gamma-aminobutyric acid, glutamate, and glutamine reveals altered concentrations in patients with schizophrenia and healthy siblings. Biol Psychiatry 2017; 81: 525–535.
35.
Matsuzawa D, Obata T, Shirayama Y, Nonaka H, Kanazawa Y, Yoshitome E, Takanashi J, Matsuda T, Shimizu E, Ikehira H, Iyo M, Hashimoto K: Negative correlation between brain glutathione level and negative symptoms in schizophrenia: a 3T 1H-MRS study. PLoS One 2008; 3:e1944.
36.
Terpstra M, Vaughan TJ, Ugurbil K, Lim KO, Schulz SC, Gruetter R: Validation of glutathione quantitation from STEAM spectra against edited 1H NMR spectroscopy at 4T: appli-cation to schizophrenia. MAGMA 2005; 18: 276–282.
37.
Dash PK, Zhao J, Orsi SA, Zhang M, Moore AN: Sulforaphane improves cognitive function administered following traumatic brain injury. Neurosci Lett 2009; 460: 103–107.
38.
Benedict AL, Mountney A, Hurtado A, Bryan KE, Schnaar RL, Dinkova-Kostova AT, Talalay P: Neuroprotective effects of sulforaphane after contusive spinal cord injury. J Neurotrauma 2012; 29: 2576–2586.
39.
Cardozo LF, Pedruzzi LM, Stenvinkel P, Stockler-Pinto MB, Daleprane JB, Leite M Jr, Mafra D: Nutritional strategies to modulate inflammation and oxidative stress pathways via activation of the master antioxidant switch Nrf2. Biochimie 2013; 95: 1525–1533.
40.
Keum YS: Regulation of the Keap1/Nrf2 system by chemopreventive sulforaphane: implications of posttranslational modifications. Ann NY Acad Sci 2011; 1229: 184–189.
41.
Fahey JW, Talalay P: Antioxidant functions of sulforaphane: a potent inducer of phase II detoxication enzymes. Food Chem Toxicol 1999; 37: 973–979.
42.
Park JH, Kim JW, Lee CM, Kim YD, Chung SW, Jung ID, Noh KT, Park JW, Heo DR, Shin YK, Seo JK, Park YM: Sulforaphane inhibits the Th2 immune response in ovalbumin- induced asthma. BMB Rep 2012; 45: 311–316.
43.
Brown RH, Reynolds C, Brooker A, Talalay P, Fahey JW: Sulforaphane improves the bronchoprotective response in asthmatics through Nrf2-mediated gene pathways. Respir Res 2015; 16: 106.
44.
Dinkova-Kostova AT, Fahey JW, Kostov RV, Kensler TW: KEAP1 and done? Targeting the NRF2 pathway with sulforaphane. Trends Food Sci Technol 2017; 69(pt B): 257–269.
45.
Singh K, Connors SL, Macklin EA, Smith KD, Fahey JW, Talalay P, Zimmerman AW: Sulforaphane treatment of autism spectrum disorder (ASD). Proc Natl Acad Sci USA 2014; 111: 15550–15555.
46.
Shiina A, Kanahara N, Sasaki T, Oda Y, Hashimoto T, Hasegawa T, Yoshida T, Iyo M, Hashimoto K: An open study of sulforaph-ane-rich broccoli sprout extract in patients with schizophrenia. Clin Psychopharmacol Neurosci 2015; 13: 62–67.
47.
Liu H, Talalay P, Fahey JW: Biomarker-guided strategy for treatment of autism spectrum disorder (ASD). CNS Neurol Disord Drug Targets 2016; 15: 602–613.
48.
Aoyama K, Suh SW, Hamby AM, Liu J, Chan WY, Chen Y, Swanson RA: Neuronal glutathione deficiency and age-dependent neurodegeneration in the EAAC1 deficient mouse. Nat Neurosci 2006; 9: 119–126.
49.
Pinto RE, Bartley W: The effect of age and sex on glutathione reductase and glutathione peroxidase activities and on aerobic glutathione oxidation in rat liver homogenates. Biochem J 1969; 112: 109–115.
50.
Wang H, Liu H, Liu RM: Gender difference in glutathione metabolism during aging in mice. Exp Gerontol 2003; 38: 507–517.
51.
James D, Devaraj S, Bellur P, Lakkanna S, Vicini J, Boddupalli S: Novel concepts of broccoli sulforaphanes and disease: induction of phase II antioxidant and detoxification enzymes by enhanced-glucoraphanin broccoli. Nutr Rev 2012; 70: 654–665.
52.
Kensler TW, Egner PA, Agyeman AS, Visvanathan K, Groopman JD, Chen JG, Chen TY, Fahey JW, Talalay P: Keap1-Nrf2 signaling: a target for cancer prevention by sulforaphane; in Pezzuto JM, Suh N (eds): Natural Products in Cancer Prevention and Therapy. Heidelberg/Berlin, Springer, 2013, vol 329, pp 163–177.
53.
Egner PA, Chen JG, Wang JB, Wu Y, Sun Y, Lu JH, Zhu J, Zhang YH, Chen YS, Friesen MD, Jacobson LP, Muñoz A, Ng D, Qian GS, Zhu YR, Chen TY, Botting NP, Zhang Q, Fahey JW, Talalay P, Groopman JD, Kensler TW: Bioavailability of sulforaphane from two broccoli sprout beverages: results of a short-term, cross-over clinical trial in Qidong, China. Cancer Prev Res (Phila) 2011; 4: 384–395.
54.
Egner PA, Chen JG, Zarth AT, Ng D, Wang J, Kensler KH, Jacobson LP, Muñoz A, Johnson JL, Groopman JD, Fahey JW, Talalay P, Zhu J, Chen T-Y, Qian G-S, Carmella SG, Hecht SS, Kensler TW: Rapid and sustainable detoxication of airborne pollutants by broccoli sprout beverage: results of a randomized clinical trial in China. Cancer Prev Res (Phila) 2014; 7: 813–823.
55.
Kensler TW, Chen J-G, Egner PA, Fahey JW, Jacobson LP, Stephenson KK, Ye L, Coady JL, Wang J-B, Wu Y, Sun Y, Zhang Q-N, Zhang B-C, Zhu Y-R, Qian G-S, Carmella SG, Hecht SS, Benning L, Gange SJ, Groopman JD, Talalay P: Effects of glucosinolate-rich broccoli sprouts on urinary levels of aflatoxin-DNA adducts and phenanthrene tetraols in a randomized clinical trial in He Zuo Township, Qidong, People’s Republic of China. Cancer Epidemiol Biomarkers Prev 2005; 14(pt 1): 2605–2613.
56.
Kensler TW, Ng D, Carmella SG, Chen M, Jacobson LP, Muñoz A, Egner PA, Chen JG, Qian GS, Chen TY, Fahey JW, Talalay P, Groopman JD, Yuan J-M, Hecht SS: Modulation of the metabolism of airborne pollutants by glucoraphanin-rich and sulforaphane-rich broccoli sprout beverages in Qidong, China. Carcinogenesis 2012; 33: 101–107.
57.
Shapiro TA, Fahey JW, Dinkova-Kostova AT, Holtzclaw WD, Stephenson KK, Wade KL, Ye L, Talalay P: Safety, tolerance, and metabolism of broccoli sprout glucosinolates and isothiocyanates: a clinical phase I study. Nutr Cancer 2006; 55: 53–62.
58.
Fahey JW, Holtzclaw WD, Wehage SL, Wade KL, Stephenson KK, Talalay P: Sulforaphane bioavailability from glucoraphanin-rich broccoli: control by active endogenous myrosinase. PLoS One 2015; 10:e0140963.
59.
Riedl MA, Saxon A, Diaz-Sanchez D: Oral sulforaphane increases phase II antioxidant enzymes in the human upper airway. Clin Immunol 2009; 130: 244–251.
60.
Ye L, Dinkova-Kostova AT, Wade KL, Zhang Y, Shapiro TA, Talalay P: Quantitative determination of dithiocarbamates in human plasma, serum, erythrocytes and urine: pharmacokinetics of broccoli sprout isothiocyanates in humans. Clin Chim Acta 2002; 316: 43–53.
61.
van Lieshout EM, Peters WH: Age and gender dependent levels of glutathione and glutathione S-transferases in human lymphocytes. Carcinogenesis 1998; 19: 1873–1875.
62.
Carnevale R, Sciarretta S, Violi F, Nocella C, Loffredo L, Perri L, Peruzzi M, Marullo AGM, De Falco E, Chimenti I, Valenti V, Biondi-Zoccai G, Frati G: Acute impact of tobacco versus electronic cigarette smoking on oxidative stress and vascular function. Chest 2016; 150: 606–612.
63.
Ellegaard PK, Poulsen HE: Tobacco smoking and oxidative stress to DNA: a meta-analysis of studies using chromatographic and immunological methods. Scand J Clin Lab Invest 2016; 76: 151–158.
64.
Tietze F: Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal Biochem 1969; 27: 502–522.
65.
Sedlak TW, Saleh M, Higginson DS, Paul BD, Juluri KR, Snyder SH: Bilirubin and glutathione have complementary antioxidant and cytoprotective roles. Proc Natl Acad Sci USA 2009; 106: 5171–5176.
66.
Koga M, Serritella AV, Messmer MM, Haya-shi-Takagi A, Hester LD, Snyder SH, Sawa A, Sedlak TW: Glutathione is a physiologic reservoir of neuronal glutamate. Biochem Biophys Res Commun 2011; 409: 596–602.
67.
Tkáč I, Starčuk Z, Choi I-Y, Gruetter R: In vivo 1H NMR spectroscopy of rat brain at 1 ms echo time. Magn Reson Med 1999; 41: 649–656.
68.
Provencher SW: Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med 1993; 30: 672–679.
69.
Soher B, Semanchuk P, Todd D, Steinberg J, Young K: VeSPA: integrated applications for RF pulse design, spectral simulation and MRS data analysis. Proc Int Soc Mag Reson Med 19, 2011, p 1410.
70.
Marenco S, Stein JL, Savostyanova AA, Sambataro F, Tan HY, Goldman AL, Verchinski BA, Barnett AS, Dickinson D, Apud JA, Cal-licott JH, Meyer-Lindenberg A, Weinberger DR: Investigation of anatomical thalamo- cortical connectivity and FMRI activation in schizophrenia. Neuropsychopharmacology 2012; 37: 499–507.
71.
Takayanagi M, Wentz J, Takayanagi Y, Schretlen DJ, Ceyhan E, Wang L, Suzuki M, Sawa A, Barta PE, Ratnanather JT, Cascella NG: Reduced anterior cingulate gray matter volume and thickness in subjects with deficit schizophrenia. Schizophr Res 2013; 150: 484–490.
72.
Cui LB, Liu J, Wang LX, Li C, Xi YB, Guo F, Wang HN, Zhang LC, Liu WM, He H, Tian P, Yin H, Lu H: Anterior cingulate cortex-related connectivity in first-episode schizophrenia: a spectral dynamic causal modeling study with functional magnetic resonance imaging. Front Hum Neurosci 2015; 9: 589.
73.
Seeman P: Schizophrenia thalamus imaging: low benzamide binding to dopamine D2 receptors suggests fewer D2Short receptors and fewer presynaptic terminals. Psychiatry Res 2013; 214: 175–180.
74.
Pergola G, Selvaggi P, Trizio S, Bertolino A, Blasi G: The role of the thalamus in schizophrenia from a neuroimaging perspective. Neurosci Biobehav Rev 2015; 54: 57–75.
75.
Reid MA, Stoeckel LE, White DM, Avsar KB, Bolding MS, Akella NS, Knowlton RC, den Hollander JA, Lahti AC: Assessments of function and biochemistry of the anterior cingulate cortex in schizophrenia. Biol Psychiatry 2010; 68: 625–633.
76.
Kraguljac NV, White DM, Hadley J, Reid MA, Lahti AC: Hippocampal-parietal dysconnectivity and glutamate abnormalities in unmedicated patients with schizophrenia. Hippocampus 2014; 24: 1524–1532.
77.
Knöchel C, Stäblein M, Storchak H, Reinke B, Jurcoane A, Prvulovic D, Linden DE, van de Ven V, Ghinea D, Wenzler S, Alves G, Matura S, Kröger A, Oertel-Knöchel V: Multimodal assessments of the hippocampal formation in schizophrenia and bipolar disorder: evidences from neurobehavioral measures and functional and structural MRI. Neuroimage Clin 2014; 6: 134–144.
78.
Xin L, Mekle R, Fournier M, Baumann PS, Ferrari C, Alameda L, Jenni R, Lu H, Schaller B, Cuenod M, Conus P, Gruetter R, Do KQ: Genetic polymorphism associated prefrontal glutathione and its coupling with brain glutamate and peripheral redox status in early psychosis. Schizophr Bull 2016; 42: 1185–1196.
79.
Tanaka TCJ, Marsman A, Wang H, Bonekamp S, Kim PK, Higgs C, Posporelis S, Varvaris M, Edden RAE, Pomper M, Schretlen D, Cascella N, Barker PB, Sawa A: Blood glutathione predicts cortical glutamate levels and cognitive function. Society for Neuroscience Annual Meeting, November 18, 2014, Washington.
80.
Bahadoran Z, Mirmiran P, Hosseinpanah F, Hedayati M, Hosseinpour-Niazi S, Azizi F: Broccoli sprouts reduce oxidative stress in type 2 diabetes: a randomized double-blind clinical trial. Eur J Clin Nutr 2011; 65: 972–977.
81.
Emiliani FE, Sedlak TW, Sawa A: Oxidative stress and schizophrenia: recent breakthroughs from an old story. Curr Opin Psychiatry 2014; 27: 185–190.
82.
Zhao J, Kobori N, Aronowski J, Dash PK: Sulforaphane reduces infarct volume following focal cerebral ischemia in rodents. Neurosci Lett 2006; 393: 108–112.
83.
Shirai Y, Fujita Y, Hashimoto K: Effects of the antioxidant sulforaphane on hyperlocomotion and prepulse inhibition deficits in mice after phencyclidine administration. Clin Psychopharmacol Neurosci 2012; 10: 94–98.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.