Understanding the molecular causes and finding appropriate therapies for psychiatric disorders are challenging tasks for research; -omics technologies are used to elucidate the molecular mechanisms underlying brain dysfunction in a hypothesis-free manner. In this review, we will focus on mass spectrometry-based proteomics and metabolomics and address how these approaches have contributed to our understanding of psychiatric disorders. Specifically, we will discuss what we have learned from mass spectrometry-based proteomics and metabolomics studies in rodent models and human cohorts, outline current limitations and discuss the potential of these methods for future applications in psychiatry.

1.
Di Girolamo F, Lante I, Muraca M, Putignani L: The role of mass spectrometry in the ‘omics' era. Curr Org Chem 2013;17:2891-2905.
2.
Craft GE, Chen A, Nairn AC: Recent advances in quantitative neuroproteomics. Methods 2013;61:186-218.
3.
Filiou MD, Martins-de-Souza D, Guest PC, Bahn S, Turck CW: To label or not to label: applications of quantitative proteomics in neuroscience research. Proteomics 2012;12:736-747.
4.
Patti GJ, Yanes O, Siuzdak G: Metabolomics: the apogee of the omics trilogy. Nat Rev Mol Cell Biol 2012;13:263-269.
5.
Dunn WB, Erban A, Weber RJM, Creek DJ, Brown M, Breitling R, Hankemeier T, Goodacre R, Neumann S, Kopka J, Viant MR: Mass appeal: metabolite identification in mass spectrometry-focused untargeted metabolomics. Metabolomics 2013;9:S44-S66.
6.
Seong E, Seasholtz AF, Burmeister M: Mouse models for psychiatric disorders. Trends Genet 2002;18:643-650.
7.
Gass P, Wotjak C: Rodent models of psychiatric disorders - practical considerations. Cell Tissue Res 2013;354:1-7.
8.
Lewis DA: The human brain revisited: opportunities and challenges in postmortem studies of psychiatric disorders. Neuropsychopharmacology 2002;26:143-154.
9.
Iauarone F, Melis M, Platania G, Cabras T, Manconi B, Petruzzelli R, Cordaro M, Siracusano A, Faa G, Messana I, Zanasi M, Castagnola M: Characterization of salivary proteins of schizophrenic and bipolar disorder patients by top-down proteomics. J Proteomics 2014;103:15-22.
10.
Zhang FX, Jia ZH, Gao P, Kong HW, Li X, Lu X, Wu YL, Xu GW: Metabonomics study of urine and plasma in depression and excess fatigue rats by ultra fast liquid chromatography coupled with ion trap-time of flight mass spectrometry. Mol Biosyst 2010;6:852-861.
11.
Zheng SN, Yu MY, Lu XM, Huo TG, Ge L, Yang JY, Wu CF, Li FM: Urinary metabonomic study on biochemical changes in chronic unpredictable mild stress model of depression. Clin Chim Acta 2010;411:204-209.
12.
Su ZH, Li SQ, Zou GA, Yu CY, Sun YG, Zhang HW, Gu Y, Zou ZM: Urinary metabonomics study of anti-depressive effect of Chaihu-Shu-Gan-San on an experimental model of depression induced by chronic variable stress in rats. J Pharm Biomed Anal 2011;55:533-539.
13.
Filiou MD, Turck CW, Martins-de-Souza D: Quantitative proteomics for investigating psychiatric disorders. Proteomics Clin Appl 2011;5:38-49.
14.
Quinones MP, Kaddurah-Daouk R: Metabolomics tools for identifying biomarkers for neuropsychiatric diseases. Neurobiol Dis 2009;35:165-176.
15.
Martins-de-Souza D, Guest PC, Rahmoune H, Bahn S: Proteomic approaches to unravel the complexity of schizophrenia. Expert Rev Proteomics 2012;9:97-108.
16.
Kaddurah-Daouk R, Krishnan KRR: Metabolomics: a global biochemical approach to the study of central nervous system diseases. Neuropsychopharmacology 2009;34:173-186.
17.
Martins-de-Souza D, Gattaz WF, Schmitt A, Novello JC, Marangoni S, Turck CW, Dias-Neto E: Proteome analysis of schizophrenia patients Wernicke's area reveals an energy metabolism dysregulation. BMC Psychiatry 2009;9:17.
18.
Wood PL, Filiou MD, Otte DM, Zimmer A, Turck CW: Lipidomics reveals dysfunctional glycosynapses in schizophrenia and the G72/G30 transgenic mouse. Schizophr Res 2014;159:365-369.
19.
Liu ML, Zheng P, Liu Z, Xu Y, Mu J, Guo J, Huang T, Meng HQ, Xie P: GC-MS based metabolomics identification of possible novel biomarkers for schizophrenia in peripheral blood mononuclear cells. Mol Biosyst 2014;10:2398-2406.
20.
Martins-de-Souza D, Maccarrone G, Wobrock T, Zerr I, Gormanns P, Reckow S, Falkai P, Schmitt A, Turck CW: Proteome analysis of the thalamus and cerebrospinal fluid reveals glycolysis dysfunction and potential biomarkers candidates for schizophrenia. J Psychiatr Res 2010;44:1176-1189.
21.
Filiou MD, Zhang Y, Teplytska L, Reckow S, Gormanns P, Maccarrone G, Frank E, Kessler MS, Hambsch B, Nussbaumer M, Bunck M, Ludwig T, Yassouridis A, Holsboer F, Landgraf R, Turck CW: Proteomics and metabolomics analysis of a trait anxiety mouse model reveals divergent mitochondrial pathways. Biol Psychiatry 2011;70:1074-1082.
22.
Filiou MD, Asara JM, Nussbaumer M, Teplytska L, Landgraf R, Turck CW: Behavioral extremes of trait anxiety in mice are characterized by distinct metabolic profiles. J Psychiatr Res 2014;58:115-122.
23.
Yang Y, Yang D, Tang G, Zhou C, Cheng K, Zhou J, Wu B, Peng Y, Liu C, Zhan Y, Chen J, Cheng G, Xie P: Proteomics reveals energy and glutathione metabolic dysregulation in the prefrontal cortex of a rat model of depression. Neuroscience 2013;247:191-200.
24.
Plubelli C, Carboni L, Becchi S, Mathe AA, Domenici E: Regulation of cytoskeleton machinery, neurogenesis and energy metabolism pathways in a rat gene-environment model of depression revealed by proteomic analysis. Neuroscience 2011;176:349-380.
25.
Beasley CL, Pennington K, Behan A, Wait R, Dunn MJ, Cotter D: Proteomic analysis of the anterior cingulate cortex in the major psychiatric disorders: evidence for disease-associated changes. Proteomics 2006;6:3414-3425.
26.
Kazuno A, Ohtawa K, Otsuki K, Usui M, Sugawara H, Okazaki Y, Kato T: Proteomic analysis of lymphoblastoid cells derived from monozygotic twins discordant for bipolar disorder: a preliminary study. PLoS One 2013;8:e53855.
27.
Webhofer C, Gormanns P, Reckow S, Lebar M, Maccarrone G, Ludwig T, Putz B, Asara JM, Holsboer F, Sillaber I, Zieglgänsberger W, Turck CW: Proteomic and metabolomic profiling reveals time-dependent changes in hippocampal metabolism upon paroxetine treatment and biomarker candidates. J Psychiatr Res 2013;47:289-298.
28.
Webhofer C, Gormanns P, Tolstikov V, Zieglgänsberger W, Sillaber I, Holsboer F, Turck CW: Metabolite profiling of antidepressant drug action reveals novel drug targets beyond monoamine elevation. Transl Psychiatry 2011;1:e58.
29.
Weckmann K, Labermaier C, Asara JM, Müller MB, Turck CW: Time-dependent metabolomic profiling of ketamine drug action reveals hippocampal pathway alterations and biomarker candidates. Transl Psychiatry 2014;4:e481.
30.
Harris LW, Guest PC, Wayland MT, Umrania Y, Krishnamurthy D, Rahmoune H, Bahn S: Schizophrenia: metabolic aspects of aetiology, diagnosis and future treatment strategies. Psychoneuroendocrinology 2013;38:752-766.
31.
Scheen AJ, De Hert MA: Abnormal glucose metabolism in patients treated with antipsychotics. Diabetes Metab 2007;33:169-175.
32.
Ng F, Berk M, Dean O, Bush AI: Oxidative stress in psychiatric disorders: evidence base and therapeutic implications. Int J Neuropsychopharmacol 2008;11:851-876.
33.
Szego EM, Janáky T, Szabó Z, Csorba A, Kompagne H, Müller G, Lévay G, Simor A, Juhász G, Kékesi KA: A mouse model of anxiety molecularly characterized by altered protein networks in the brain proteome. Eur Neuropsychopharmacol 2010;20:96-111.
34.
Filiou MD, Teplytska L, Otte DM, Zimmer A, Turck CW: Myelination and oxidative stress alterations in the cerebellum of the G72/G30 transgenic schizophrenia mouse model. J Psychiatr Res 2012;46:1359-1365.
35.
Prabakaran S, Swatton JE, Ryan MM, Huffaker SJ, Huang JTJ, Griffin JL, Wayland M, Freeman T, Dudbridge F, Lilley KS, Karp NA, Hester S, Tkachev D, Mimmack ML, Yolken RH, Webster MJ, Torrey EF, Bahn S: Mitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stress. Mol Psychiatry 2004;9:684-697.
36.
Prabakaran S, Wengenroth M, Lockstone HE, Lilley K, Leweke FM, Bahn S: 2-D DIGE analysis of liver and red blood cells provides further evidence for oxidative stress in schizophrenia. J Proteome Res 2007;6:141-149.
37.
Martins-de-Souza D, Harris LW, Guest PC, Bahn S: The role of energy metabolism dysfunction and oxidative stress in schizophrenia revealed by proteomics. Antioxid Redox Signal 2011;15:2067-2079.
38.
Marais L, Hattingh SM, Stein DJ, Daniels WM: A proteomic analysis of the ventral hippocampus of rats subjected to maternal separation and escitalopram treatment. Metab Brain Dis 2009;24:569-586.
39.
Ji BH, La YJ, Gao LH, Zhu H, Tian N, Zhang M, Yang YF, Zhao XZ, Tang RQ, Ma G, Zhou J, Meng JW, Ma J, Zhang Z, Li HF, Feng GY, Wang YJ, He L, Wan CL: A comparative proteomics analysis of rat mitochondria from the cerebral cortex and hippocampus in response to antipsychotic medications. J Proteome Res 2009;8:3633-3641.
40.
Iris F, Filiou M, Turck CW: Differential proteomics analyses reveal anxiety-associated molecular and cellular mechanisms in cingulate cortex synapses. Am J Psychiatry Neurosci 2014;2:25-42.
41.
Otte DM, Sommersberg B, Kudin A, Guerrero C, Albayram O, Filiou MD, Frisch P, Yilmaz O, Drews E, Turck CW, Bilkei-Gorzó A, Kunz WS, Beck H, Zimmer A: N-acetyl cysteine treatment rescues cognitive deficits induced by mitochondrial dysfunction in G72/G30 transgenic mice. Neuropsychopharmacology 2011;36:2233-2243.
42.
Iwazaki T, McGregor IS, Matsumoto I: Protein expression profile in the amygdala of rats with methamphetamine-induced behavioral sensitization. Neurosci Lett 2008;435:113-119.
43.
McClay JL, Adkins DE, Vunck SA, Batman AM, Vann RE, Clark SL, Beardsley PM, van den Oord EJ: Large-scale neurochemical metabolomics analysis identifies multiple compounds associated with methamphetamine exposure. Metabolomics 2013;9:392-402.
44.
Clay HB, Sillivan S, Konradi C: Mitochondrial dysfunction and pathology in bipolar disorder and schizophrenia. Int J Dev Neurosci 2011;29:311-324.
45.
Martins-de-Souza D, Gattaz WF, Schmitt A, Rewerts C, Maccarrone G, Dias-Neto E, Turck CW: Prefrontal cortex shotgun proteome analysis reveals altered calcium homeostasis and immune system imbalance in schizophrenia. Eur Arch Psychiatry Clin Neurosci 2009;259:151-163.
46.
Li Y, Zhou KJ, Zhang Z, Sun LY, Yang JL, Zhang M, Ji BH, Tang KF, Wei ZY, He G, Gao LH, Yang L, Wang P, Yang P, Feng GY, He L, Wan CL: Label-free quantitative proteomic analysis reveals dysfunction of complement pathway in peripheral blood of schizophrenia patients: evidence for the immune hypothesis of schizophrenia. Mol Biosyst 2012;8:2664-2671.
47.
Herberth M, Rahmoune H, Schwarz E, Koethe D, Harris LW, Kranaster L, Witt SH, Spain M, Barnes A, Schmolz M, Leweke MF, Guest PC, Bahn S: Identification of a molecular profile associated with immune status in first-onset schizophrenia patients. Clin Schizophr Relat Psychoses 2014;7:207-215.
48.
Craddock RM, Huang JT, Jackson E, Harris N, Torrey EF, Herberth M, Bahn S: Increased α-defensins as a blood marker for schizophrenia susceptibility. Mol Cell Proteomics 2008;7:1204-1213.
49.
Bisgaard CF, Bak S, Christensen T, Jensen ON, Enghild JJ, Wiborg O: Vesicular signalling and immune modulation as hedonic fingerprints: proteomic profiling in the chronic mild stress depression model. J Psychopharmacol 2012;26:1569-1583.
50.
Olsen JV, Mann M: Status of large-scale analysis of post-translational modifications by mass spectrometry. Mol Cell Proteomics 2013;12:3444-3452.
51.
Martins-de-Souza D, Guest PC, Vanattou-Saifoudine N, Rahmoune H, Bahn S: Phosphoproteomic differences in major depressive disorder postmortem brains indicate effects on synaptic function. Eur Arch Psychiatry Clin Neurosci 2012;262:657-666.
52.
Karaki S, Becamel C, Murat S, Mannoury la Cour C, Millan MJ, Prézeau L, Bockaert J, Marin P, Vandermoere F: Quantitative phosphoproteomics unravels biased phosphorylation of serotonin 2A receptor at Ser280 by hallucinogenic versus nonhallucinogenic agonists. Mol Cell Proteomics 2014;13:1273-1285.
53.
Barabási AL, Gulbahce N, Loscalzo J: Network medicine: a network-based approach to human disease. Nat Rev Genet 2011;12:56-68.
54.
Qureshi IA, Mehler MF: Towards a ‘systems'-level understanding of the nervous system and its disorders. Trends Neurosci 2013;36:674-684.
55.
Turck CW, Iris F: Proteome-based pathway modelling of psychiatric disorders. Pharmacopsychiatry 2011;44:S54-S61.
56.
Gross CT, Canteras NS: The many paths to fear. Nat Rev Neurosci 2012;13:651-658.
57.
Filiou MD, Soukupova M, Rewerts C, Webhofer C, Turck CW, Maccarrone G: Variability assessment of 15N metabolic labeling-based proteomics workflow in mouse plasma and brain. Mol Biosyst 2015, Epub ahead of print.
58.
Russell MR, Lilley KS: Pipeline to assess the greatest source of technical variance in quantitative proteomics using metabolic labelling. J Proteomics 2012;77:441-454.
59.
Masson P, Spagou K, Nicholson JK, Want EJ: Technical and biological variation in UPLC-MS-based untargeted metabolic profiling of liver extracts: application in an experimental toxicity study on galactosamine. Anal Chem 2011;83:1116-1123.
60.
Choe LH, Lee KH: Quantitative and qualitative measure of intralaboratory two-dimensional protein gel reproducibility and the effects of sample preparation, sample load, and image analysis. Electrophoresis 2003;24:3500-3507.
61.
Pallen C: Technical variability of 2D gel electrophoresis - application to soybean allergens. Toxicol Rep 2014;1:734-742.
62.
Stoop MP, Coulier L, Rosenling T, Shi S, Smolinska AM, Buydens L, Ampt K, Stingl C, Dane A, Muilwijk B, Luitwieler RL, Sillevis Smitt PA, Hintzen RQ, Bischoff R, Wijmenga SS, Hankemeier T, van Gool AJ, Luider TM: Quantitative proteomics and metabolomics analysis of normal human cerebrospinal fluid samples. Mol Cell Proteomics 2010;9:2063-2075.
63.
Hyman SE: Revolution stalled. Sci Transl Med 2012;4:155cm11.
64.
He Y, Yu Z, Giegling I, Xie L, Hartmann AM, Prehn C, Adamski J, Kahn R, Li Y, Illig T, Wang-Sattler R, Rujescu D: Schizophrenia shows a unique metabolomics signature in plasma. Transl Psychiatry 2012;2:e149.
65.
Paige L, Mitchell MW, Krishnan RR, Kaddurah-Daouk R, Steffens DC: A preliminary metabolomic analysis of older adults with and without depression. Neuropsychopharmacology 2006;31:S107-S108.
66.
Ding XH, Yang SG, Li WJ, Liu Y, Li ZG, Zhang Y, Li LJ, Liu SJ: The potential biomarker panels for identification of major depressive disorder (MDD) patients with and without early life stress (ELS) by metabonomic analysis. PLoS One 2014;9:e97479.
67.
Xuan J, Pan G, Qiu Y, Yang L, Su M, Liu Y, Chen J, Feng G, Fang Y, Jia W, Xing Q, He L: Metabolomic profiling to identify potential serum biomarkers for schizophrenia and risperidone action. J Proteome Res 2011;10:5433-5443.
68.
Orešič M, Tang J, Seppänen-Laakso T, Mattila I, Saarni SE, Saarni SI, Lönnqvist J, Sysi-Aho M, Hyötyläinen T, Perälä J, Suvisaari J: Metabolome in schizophrenia and other psychotic disorders: a general population-based study. Genome Med 2011;3:19.
69.
Herberth M, Koethe D, Levin Y, Schwarz E, Krzyszton ND, Schoeffmann S, Ruh H, Rahmoune H, Kranaster L, Schoenborn T, Leweke MF, Guest PC, Bahn S: Peripheral profiling analysis for bipolar disorder reveals markers associated with reduced cell survival. Proteomics 2011;11:94-105.
70.
Schwarz E, Guest PC, Rahmoune H, Martins-de-Souza D, Niebuhr DW, Weber NS, Cowan DN, Yolken RH, Spain M, Barnes A, Bahn S: Identification of a blood-based biological signature in subjects with psychiatric disorders prior to clinical manifestation. World J Biol Psychiatry 2012;13:627-632.
71.
Wang L, Lockstone HE, Guest PC, Levin Y, Palotás A, Pietsch S, Schwarz E, Rahmoune H, Harris LW, Ma D, Bahn S: Expression profiling of fibroblasts identifies cell cycle abnormalities in schizophrenia. J Proteome Res 2010;9:521-527.
72.
Huang JT, Wang L, Prabakaran S, Wengenroth M, Lockstone HE, Koethe D, Gerth CW, Gross S, Schreiber D, Lilley K, Wayland M, Oxley D, Leweke FM, Bahn S: Independent protein-profiling studies show a decrease in apolipoprotein A1 levels in schizophrenia CSF, brain and peripheral tissues. Mol Psychiatry 2008;13:1118-1128.
73.
Cosgrove VE, Suppes T: Informing DSM-5: biological boundaries between bipolar I disorder, schizoaffective disorder, and schizophrenia. BMC Med 2013;11:127.
74.
Reckow S, Webhofer C: Analysis of individual protein turnover in live animals on a proteome-wide scale. Methods Mol Biol 2014;1156:147-154.
75.
Hsieh EJ, Shulman NJ, Dai DF, Vincow ES, Karunadharma PP, Pallanck L, Rabinovitch PS, Maccoss MJ: Topograph, a software platform for precursor enrichment corrected global protein turnover measurements. Mol Cell Proteomics 2012;11:1468-1474.
76.
Korth C: Aggregated proteins in schizophrenia and other chronic mental diseases: DISC1opathies. Prion 2012;6:134-141.
77.
Rubio MD, Wood K, Haroutunian V, Meador-Woodruff JH: Dysfunction of the ubiquitin proteasome and ubiquitin-like systems in schizophrenia. Neuropsychopharmacology 2013;38:1910-1920.
78.
Rubakhin SS, Hatcher NG, Monroe EB, Heien ML, Sweedler JV: Mass spectrometric imaging of the nervous system. Curr Pharm Design 2007;13:3325-3334.
79.
Steinhauser ML, Bailey AP, Senyo SE, Guillermier C, Perlstein TS, Gould AP, Lee RT, Lechene CP: Multi-isotope imaging mass spectrometry quantifies stem cell division and metabolism. Nature 2012;481:516-519.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.