A comparison between the efficiency of recombinase-mediated cassette exchange (RMCE) reactions catalyzed in Escherichia coli by the site-specific recombinases Flp of yeast and Int of coliphage HK022 has revealed that an Flp-catalyzed RMCE reaction is more efficient than an Int-HK022 catalyzed reaction. In contrast, an RMCE reaction with 1 pair of frt sites and 1 pair of att sites catalyzed in the presence of both recombinases is very inefficient. However, the same reaction catalyzed by each recombinase individually supplied in a sequential order is very efficient, regardless of the order. Atomic force microscopy images of Flp with its DNA substrates show that only 1 pair of recombination sites forms a synaptic complex with the recombinase. The results suggest that the RMCE reaction is sequential.

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.