DNA as an active agent is among the most promising technologies for vaccination and therapy. However, plasmid backbone sequences needed for the production of pDNA in bacteria are dispensable, reduce the efficiency of the DNA agent and, most importantly, represent a biological safety risk. In this report we describe a novel technique where a site-specific recombination system based on the ParA resolvase was applied to a self-immobilizing plasmid system (SIP). In addition, this system was combined with the protein E-specific lysis technology to produce non-living bacterial carrier vehicles loaded with minicircle DNA. The in vivo recombination process completely divided an origin plasmid into a minicircle and a miniplasmid. The replicative miniplasmid containing the origin of replication and the antibiotic resistance gene was lost during the subsequently induced PhiX174 gene E-mediated lysis process, which results in bacterial ghosts. The minicircle DNA was retained in these empty bacterial cell envelopes during the lysis process via the specific interaction of a membrane anchored protein with the minicircle DNA. Using this novel platform technology, a DNA delivery vehicle – consisting of a safe bacterial carrier with known adjuvant properties and minicircle DNA with an optimized safety profile – can be produced in vivo in a continuous process. Furthermore, this study provides the basis for the development of an efficient in vitro minicircle purification process.

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.