In the last decades, biodegradation as an environmentally friendly approach has raised interest in connection with the removal of hydrocarbon pollutants. Its capacity for removing pollutants strongly depends on the type of living cell and environmental conditions. The degradative activity of a new sophorolipid-producing yeast, Candida catenulata KP324968, in the removal of high concentrations of diesel from effluents was statistically evaluated considering the initial pH, the agitation speed, and the initial diesel concentration. The optimal setting of the operational variables at an initial pH of 4.7, an agitation speed of 204 rpm, and an initial diesel concentration of 93.4 g L–1 resulted in the highest total petroleum hydrocarbon removal efficiency: about 82.1% after 6 days (biodegradation rate: 0.378 g gcell–1 h–1). During the cell growth phase, the emulsification index in the medium increased and reached its highest level at 64.6% after 48 h. Further tests indicated that the emulsification capacity was obtained by in situ production of two sophorolipid molecules with an m/z of 533 and 583. In summary, its effective diesel removal and high emulsification capacity makes C. catenulata KP324968 an attractive candidate yeast for the degradation of hydrocarbons from aqueous environments.

1.
Amézcua-Vega
C
,
Poggi-Varaldo
HM
,
Esparza-García
F
,
Ríos-Leal
E
,
Rodríguez-Vázquez
R
.
Effect of culture conditions on fatty acids composition of a biosurfactant produced by Candida ingens and changes of surface tension of culture media
.
Bioresour Technol
.
2007
Jan
;
98
(
1
):
237
40
.
[PubMed]
0960-8524
2.
Ashby
RD
,
Solaiman
DK
,
Foglia
TA
.
Property control of sophorolipids: influence of fatty acid substrate and blending
.
Biotechnol Lett
.
2008
Jun
;
30
(
6
):
1093
100
.
[PubMed]
0141-5492
3.
Awe
S
,
Mikolasch
A
,
Hammer
E
,
Schauer
F
.
Degradation of phenylalkanes and characterization of aromatic intermediates acting as growth inhibiting substances in hydrocarbon utilizing yeast Candida maltose
.
Int Biodeterior Biodegradation
.
2008
;
62
(
4
):
408
14
. 0964-8305
4.
Beal
R
,
Betts
WB
.
Role of rhamnolipid biosurfactants in the uptake and mineralization of hexadecane in Pseudomonas aeruginosa
.
J Appl Microbiol
.
2000
Jul
;
89
(
1
):
158
68
.
[PubMed]
1364-5072
5.
Bento
FM
,
Camargo
FA
,
Okeke
BC
,
Frankenberger
WT
.
Comparative bioremediation of soils contaminated with diesel oil by natural attenuation, biostimulation and bioaugmentation
.
Bioresour Technol
.
2005
Jun
;
96
(
9
):
1049
55
.
[PubMed]
0960-8524
6.
Bezza
FA
,
Beukes
M
,
Nkhalambayausi Chirwa
EM
.
Application of biosurfactant produced by Ochrobactrum intermedium CN3 for enhancing petroleum sludge bioremediation
.
Process Biochem
.
2015
;
50
(
11
):
1911
22
. 1359-5113
7.
Bhattacharya
M
,
Biswas
D
,
Guchhait
S
.
Applied growth kinetic models for crude oil spill bioremediation in a batch scale bioreactor
.
J Environ Hazard
.
2018
;
1
:
105
10
.
8.
Binazadeh
M
,
Karimi
IA
,
Li
Z
.
Fast biodegradation of long chain n-alkanes and crude oil at high concentrations with Rhodococcus sp. Moj-3449
.
Enzyme Microb Technol
.
2009
;
45
(
3
):
195
202
. 0141-0229
9.
Chandran
P
,
Das
N
.
Biosurfactant production and diesel oil degradation by yeast species Trichosporon asahii isolated from petroleum hydrocarbon contaminated
.
Int J Eng Sci Technol
.
2010
;
2
:
6942
53
.0975-5462
10.
Chandran
P
,
Das
N
.
Characterization of sophorolipid biosurfactant produced by yeast species grown on diesel oil
.
Int J Sci Nat
.
2001
;
2
:
63
71
.
11.
Chang
YY
,
Roh
H
,
Yang
JK
.
Improving the clean-up efficiency of field soil contaminated with diesel oil by the application of stabilizers
.
Environ Technol
.
2013
May-Jun
;
34
(
9-12
):
1481
7
.
[PubMed]
0959-3330
12.
Gentile
G
,
Bonsignore
M
,
Santisi
S
,
Catalfamo
M
,
Giuliano
L
,
Genovese
L
, et al.
.
Biodegradation potentiality of psychrophilic bacterial strain Oleispira antarctica RB-8(T)
.
Mar Pollut Bull
.
2016
Apr
;
105
(
1
):
125
30
.
[PubMed]
0025-326X
13.
Habibi
A
,
Babaei
F
.
Biological treatment of real oilfield produced water by bioaugmentation with sophorolipid-producing Candida catenulata
.
Environ Processes
.
2017
;
4
(
4
):
891
906
.
14.
Habibi
A
,
Vahabzadeh
F
.
Degradation of formaldehyde at high concentrations by phenol-adapted Ralstonia eutropha closely related to pink-pigmented facultative methylotrophs
.
J Environ Sci Health A Tox Hazard Subst Environ Eng
.
2013
;
48
(
3
):
279
92
.
[PubMed]
1532-4117
15.
Hassanshahian
M
,
Tebyanian
H
,
Cappello
S
.
Isolation and characterization of two crude oil-degrading yeast strains, Yarrowia lipolytica PG-20 and PG-32, from the Persian Gulf
.
Mar Pollut Bull
.
2012
Jul
;
64
(
7
):
1386
91
.
[PubMed]
0025-326X
16.
Hitsatsuka
K
,
Nakahara
T
,
Sano
N
,
Yamada
K
.
Formation of a rhamnolipid by Pseudomonas aeruginosa and its function in hydrocarbon fermentation
.
Agric Biol Chem
.
1971
;
35
(
5
):
686
92
. 0002-1369
17.
Hu
Y
,
Ju
LK
.
Sophorolipid production from different lipid precursors observed with LC-MS
.
Enzyme Microb Technol
.
2001
;
29
(
10
):
593
601
. 0141-0229
18.
Hua
Z
,
Chen
J
,
Lun
S
,
Wang
X
.
Influence of biosurfactants produced by Candida antarctica on surface properties of microorganism and biodegradation of n-alkanes
.
Water Res
.
2003
Oct
;
37
(
17
):
4143
50
.
[PubMed]
0043-1354
19.
Huang
L
,
Xie
J
,
Lv
BY
,
Shi
XF
,
Li
GQ
,
Liang
FL
, et al.
.
Optimization of nutrient component for diesel oil degradation by Acinetobacter beijerinckii ZRS
.
Mar Pollut Bull
.
2013
Nov
;
76
(
1-2
):
325
32
.
[PubMed]
0025-326X
20.
Jadhav
VV
,
Yadav
A
,
Shouche
YS
,
Aphale
S
,
Moghe
A
,
Pillai
S
, et al.
.
Studies on biosurfactant from Oceanobacillus sp. BRI 10 isolated from Antarctic sea water
.
Desalination
.
2013
;
318
:
64
71
. 0011-9164
21.
Jamali
S
,
Gharaei
M
,
Abbasi
S
.
Identification of yeast species from uncultivated soils by sequence analysis of the hypervariable D1/D2 domain of LSU-rDNA gene in Kermanshah province, Iran
.
Mycologia Iranica
.
2016
;
3
:
87
98
.
22.
Jiménez-Penalver
P
,
Gea
T
,
Sánchez
A
,
Font
A
.
Production of sophorolipids from winterization oil cake by solid-state fermentation: Optimization, monitoring and effect of mixing
.
Biochem Eng J
.
2016
;
115
:
93
100
. 1369-703X
23.
Joo
HS
,
Ndegwa
PM
,
Shoda
M
,
Phae
CG
.
Bioremediation of oil-contaminated soil using Candida catenulata and food waste
.
Environ Pollut
.
2008
Dec
;
156
(
3
):
891
6
.
[PubMed]
0269-7491
24.
Kaczorek
E
,
Chrzanowski
L
,
Pijanowska
A
,
Olszanowski
A
.
Yeast and bacteria cell hydrophobicity and hydrocarbon biodegradation in the presence of natural surfactants: rhamnolipides and saponins
.
Bioresour Technol
.
2008
Jul
;
99
(
10
):
4285
91
.
[PubMed]
0960-8524
25.
Kaczorek
E
,
Urbanowicz
M
,
Olszanowski
A
.
The influence of surfactants on cell surface properties of Aeromonas hydrophila during diesel oil biodegradation
.
Colloids Surf B Biointerfaces
.
2010
Nov
;
81
(
1
):
363
8
.
[PubMed]
0927-7765
26.
Kim
HS
,
Kim
SB
,
Park
SH
,
Oh
HM
,
Park
YI
,
Kim
CK
, et al.
.
Expression of sfp gene and hydrocarbon degradation by Bacillus subtilis
.
Biotechnol Lett
.
2000
;
22
(
18
):
1431
6
. 0141-5492
27.
Liu
B
,
Liu
J
,
Ju
M
,
Li
X
,
Yu
Q
.
Purification and characterization of biosurfactant produced by Bacillus licheniformis Y-1 and its application in remediation of petroleum contaminated soil
.
Mar Pollut Bull
.
2016
Jun
;
107
(
1
):
46
51
.
[PubMed]
0025-326X
28.
Luna
JM
,
Rufino
RD
,
Jara
AM
,
Brasileiro
PP
,
Sarubbo
LA
.
Environmental applications of the biosurfactant produced by Candida sphaerica cultivated in low-cost substrates. Colloids and Surfaces A Physicochem
.
Eng
.
2014
;
480
:
413
8
.
29.
Luna
JM
,
Rufino
RD
,
Sarubbo
LA
,
Campos-Takaki
GM
.
Characterisation, surface properties and biological activity of a biosurfactant produced from industrial waste by Candida sphaerica UCP0995 for application in the petroleum industry
.
Colloids Surf B Biointerfaces
.
2013
Feb
;
102
:
202
9
.
[PubMed]
0927-7765
30.
Luna
JM
,
Sarubbo
L
,
de Campos-Takaki
GM
.
A new biosurfactant produced by Candida glabrata UCP 1002: characteristics of stability and application in oil recovery
.
Braz Arch Biol Technol
.
2009
;
52
(
4
):
785
93
. 1516-8913
31.
Masneuf-Pomarède
I
,
Le Jeune
C
,
Durrens
P
,
Lollier
M
,
Aigle
M
,
Dubourdieu
D
.
Molecular typing of wine yeast strains Saccharomyces bayanus var. uvarum using microsatellite markers
.
Syst Appl Microbiol
.
2007
Jan
;
30
(
1
):
75
82
.
[PubMed]
0723-2020
32.
Nakhla
G
,
Liu
V
,
Bassi
A
.
Kinetic modeling of aerobic biodegradation of high oil and grease rendering wastewater
.
Bioresour Technol
.
2006
Jan
;
97
(
1
):
131
9
.
[PubMed]
0960-8524
33.
Nunez
A
,
Ashby
R
,
Foglia
TA
,
Solairnan
DK
.
Analysis and characterization of sophorolipids by liquid chromatography with atmospheric pressure chemical ionization
.
J Chromatogr A
.
2001
;
53
(
11-12
):
673
7
. 0021-9673
34.
Rahman
KS
,
Rahman
TJ
,
Kourkoutas
Y
,
Petsas
I
,
Marchant
R
,
Banat
IM
.
Enhanced bioremediation of n-alkane in petroleum sludge using bacterial consortium amended with rhamnolipid and micronutrients
.
Bioresour Technol
.
2003
Nov
;
90
(
2
):
159
68
.
[PubMed]
0960-8524
35.
Ramasamy
S
,
Arumugam
A
,
Chandran
P
.
Optimization of Enterobacter cloacae (KU923381) for diesel oil degradation using response surface methodology (RSM)
.
J Microbiol
.
2017
Feb
;
55
(
2
):
104
11
.
[PubMed]
1225-8873
36.
Ratsep
P
,
Shah
V
.
Identification and quantification of sophorolipid analogs using ultra-fast liquid chromatography-mass spectrometry
.
J Microbiol Methods
.
2009
Sep
;
78
(
3
):
354
6
.
[PubMed]
0167-7012
37.
Rufino
RD
,
Luna
JM
,
Takaki
GM
,
Sarubbo
LA
.
Characterization and properties of the biosurfactant produced by Candida lipolytica UCP 0988
.
Electron J Biotechnol
.
2014
;
17
(
1
):
34
8
. 0717-3458
38.
Scheller
U
,
Zimmer
T
,
Becher
D
,
Schauer
F
,
Schunck
WH
.
Oxygenation cascade in conversion of n-alkanes to α,ω-dioic acids catalyzed by cytochrome P450 52A3
.
J Biol Chem
.
1998
Dec
;
273
(
49
):
32528
34
.
[PubMed]
0021-9258
39.
Silva
DS
,
Cavalcanti
DL
,
Melo
EJ
,
Santos
PN
,
Luz
EL
,
Gusmao
NB
, et al.
.
Bioremoval of diesel oil through a microbial consortium isolated from a polluted environment
.
Int Biodeterior Biodegradation
.
2015
;
97
:
85
9
. 0964-8305
40.
Sood
N
,
Lal
B
.
Isolation of a novel yeast strain Candida digboiensis TERI ASN6 capable of degrading petroleum hydrocarbons in acidic conditions
.
J Environ Manage
.
2009
Apr
;
90
(
5
):
1728
36
.
[PubMed]
0301-4797
41.
Urum
K
,
Grigson
S
,
Pekdemir
T
,
McMenamy
S
.
A comparison of the efficiency of different surfactants for removal of crude oil from contaminated soils
.
Chemosphere
.
2006
Mar
;
62
(
9
):
1403
10
.
[PubMed]
0045-6535
42.
Van Bogaert
IN
,
De Mey
M
,
Develter
D
,
Soetaert
W
,
Vandamme
EJ
.
Importance of the cytochrome P450 monooxygenase CYP52 family for the sophorolipid-producing yeast Candida bombicola
.
FEMS Yeast Res
.
2009
Feb
;
9
(
1
):
87
94
.
[PubMed]
1567-1356
43.
Zahed
MA
,
Aziz
HA
,
Isa
MH
,
Mohajeri
L
,
Mohajeri
S
.
Optimal conditions for bioremediation of oily seawater
.
Bioresour Technol
.
2010
Dec
;
101
(
24
):
9455
60
.
[PubMed]
0960-8524
44.
Zhang
Y
,
Miller
RM
.
Effect of rhamnolipid (biosurfactant) structure on solubilization and biodegradation of n-alkanes
.
Appl Environ Microbiol
.
1995
Jun
;
61
(
6
):
2247
51
.
[PubMed]
0099-2240
You do not currently have access to this content.