Members of Cohnella sp. isolated from a variety of environments have been shown to be glycoside hydrolase producers. Nevertheless, most evaluations of members of this genus are limited to their taxonomic description. The strain AR92, previously identified as belonging to the genus Cohnella, formed a well-supported cluster with C. thailandensis and C. formosensis (>80% bootstrap confidence). Its growth and xylanase production were approached by using a mineral-based medium containing alkali-pretreated sugarcane bagasse as the main carbon source, which was assayed as a convenient source to produce biocatalysts potentially fitting its degradation. By means of a two-step statistical approach, the production of endoxylanase was moderately improved (20%). However, a far more significant improvement was observed (145%), by increasing the inoculum size and lowering the fermentation temperature to 25°C, which is below the optimal growth temperature of the strain AR92 (37°C). The xylanolytic preparation produced by Cohnella sp. AR92 contained mild temperature-active endoxylanase (identified as redundant GH10 family) for the main activity which resulted in xylobiose and xylo-oligosaccharides as the main products from birchwood xylan.

1.
Aliabadi N, Aminzadeh S, Karkhane AA, Haghbeen K: Thermostable chitinase from Cohnella sp. A01: isolation and product optimization. Braz J Microbiol 2016;47:931-940.
[PubMed]
2.
Arora A, Krishna P, Malik V, Reddy MS: Alkalistable xylanase production by alkali-tolerant Paenibacillus montaniterrae RMV1 isolated from red mud. J Basic Microbiol 2014;54:1023-1029.
[PubMed]
3.
Bano S, Qader SA, Aman A, Syed MN, Durrani K: High production of cellulose degrading endo-1,4-β-D-glucanase using bagasse as a substrate from Bacillus subtilis KIBGE HAS. Carbohydr Polym 2013;91:300-304.
[PubMed]
4.
Berlemont R, Martiny AC: Phylogenetic distribution of potential cellulases in bacteria. Appl Environ Microbiol 2013;79:1545-1554.
[PubMed]
5.
Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976;72:248-254.
[PubMed]
6.
Breccia JD, Castro GR, Baigorí MD, Siñeriz F: Screening of xylanolytic bacteria using a colour plate method. J Appl Bacteriol 1995;78:469-472.
7.
Capolupo L, Faraco V: Green methods of lignocellulose pretreatment for biorefinery development. Appl Microbiol Biotechnol 2016;100:9451-9467.
[PubMed]
8.
Cho EA, Lee DW, Cha YH, Lee SJ, Jung HC, Pan JG, Pyun YR: Characterization of a novel D-lyxose isomerase from Cohnella laevoribosii RI-39 sp. nov. J Bacteriol 2007;189:1655-1663.
[PubMed]
9.
Cui F, Zhao L: Optimization of xylanase production from Penicillium sp. WX-Z1 by a Two-step statistical strategy: Plackett-Burman and Box-Behnken experimental design. Int J Mol Sci 2012;13:10630-10646.
[PubMed]
10.
Dheeran P, Nandhagopal N, Kumar S, Jaiswal YK, Adhikari DK: A novel thermostable xylanase of Paenibacillus macerans IIPSP3 isolated from the termite gut. J Ind Microbiol Biotechnol 2012;39:851-860.
[PubMed]
11.
Dondelinger E, Aubry N, Ben Chaabane F, Cohen C, Tayeb J, Rémond C: Contrasted enzymatic cocktails reveal the importance of cellulases and hemicellulases activity ratios for the hydrolysis of cellulose in presence of xylans. AMB Express 2016;6:24-32.
[PubMed]
12.
Euzéby JP: List of Bacterial Names with Standing in Nomenclature: a folder available on the internet. Int J Syst Bacteriol 1997;47:590-592. http://www.bacterio.net (accessed Jan 10, 2017).
[PubMed]
13.
Fukuda M, Watanabe S, Yoshida S, Itoh H, Itoh Y, Kamio Y, Kaneko J: Cell surface xylanases of the glycoside hydrolase family 10 are essential for xylan utilization by Paenibacillus sp. W-61 as generators of xylo-oligosaccharide inducers for the xylanase genes. J Bacteriol 2010;192:2210-2219.
[PubMed]
14.
Golaki BP, Aminzadeh S, Karkhane AA, Yakhchali B, Farrokh P, Khaleghinejad SH, Tehrani AA, Mehrpooyan S: Cloning, expression, purification, and characterization of lipase 3646 from thermophilic indigenous Cohnella sp. A01. Protein Expr Purif 2015;109:120-126.
[PubMed]
15.
Hameed A, Hung MH, Lin SY, Hsu YH, Liu YC, Shahina M, Lai WA, Huang HC, Young LS, Young CC: Cohnella formosensis sp. nov., a xylanolytic bacterium isolated from the rhizosphere of Medicago sativa L. Int J Syst Evol Microbiol 2013;63:2806-2812.
[PubMed]
16.
Hu J, Arantes V, Pribowo A, Saddler JN: The synergistic action of accessory enzymes enhances the hydrolytic potential of a “cellulase mixture” but is highly substrate specific. Biotechnol Biofuels 2013;6:112-123.
[PubMed]
17.
Kämpfer P, Glaeser SP, Busse HJ: Cohnella lubricantis sp. nov., isolated from a coolant lubricant solution. Int J Syst Evol Microbiol 2017;67:466-471.
[PubMed]
18.
Kämpfer P, Rosselló-Mora R, Falsen E, Busse HJ, Tindall BJ: Cohnella thermotolerans gen. nov., sp. nov., and classification of “Paenibacillus hongkongensis” as Cohnella hongkongensis sp. nov. Int J Syst Evol Microbiol 2006;56:781-786.
[PubMed]
19.
Khianngam S, Tanasupawat S, Akaracharanya A, Kim KK, Lee KC, Lee JS: Cohnella thailandensis sp. nov., a xylanolytic bacterium from Thai soil. Int J Syst Evol Microbiol 2010;60:2284-2287.
[PubMed]
20.
Kim DY, Han MK, Oh HW, Bae KS, Jeong TS, Kim SU, Shin DH, Kim IH, Rhee YH, Son KH, Park H: Novel intracellular GH10 xylanase from Cohnella laeviribosi HY-21: biocatalytic properties and alterations of substrate specificities by site-directed mutagenesis of Trp residues. Bioresour Technol 2010;101:8814-8821.
[PubMed]
21.
Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, Won S, Chun J: Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62:716-721.
[PubMed]
22.
Laemmli UK: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970;227:680-685.
[PubMed]
23.
Lee KC, Kim KK, Kim JS, Kim DS, Ko SH, Yang SH, Lee JS: Cohnella collisoli sp. nov., isolated from lava forest soil. Int J Syst Evol Microbiol 2015;65:3125-3130.
[PubMed]
24.
Lemos JL, Fontes MC, Pereira N Jr: Xylanase production by Aspergillus awamori in solid-state fermentation and influence of different nitrogen sources. Appl Biochem Biotechnol 2001;91:681-689.
[PubMed]
25.
López-Mondéjar R, Zühlke D, Větrovský T, Becher D, Riedel K, Baldrian P: Decoding the complete arsenal for cellulose and hemicellulose deconstruction in the highly efficient cellulose decomposer Paenibacillus O199. Biotechnol Biofuels 2016;9:104-115.
[PubMed]
26.
Manfredi AP, Perotti NI, Martínez MA: Cellulose degrading bacteria isolated from industrial samples and the gut of native insects from Northwest of Argentina. J Basic Microbiol 2015;55:1384-1393.
[PubMed]
27.
Manfredi AP, Pisa JH, Valdeón DH, Perotti NI, Martínez MA: Synergistic effect of simple sugars and carboxymethyl cellulose on the production of a cellulolytic cocktail from Bacillus sp. AR03 and enzyme activity characterization. Appl Biochem Biotechnol 2016;179:16-32.
[PubMed]
28.
Miller GL: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 1959;31:426-428.
29.
Murray RGE, Doetsch RN, Robinow CF: Determinative and cytological light microscopy; in Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds): Methods for General and Molecular Bacteriology. Washington DC, American Society for Microbiology, 1994, pp 21-41.
30.
Pason P, Kyu KL, Ratanakhanokchai K: Paenibacillus curdlanolyticus strain B-6 xylanolytic-cellulolytic enzyme system that degrades insoluble polysaccharides. Appl Environ Microbiol 2006;72:2483-2490.
[PubMed]
31.
Pinheiro GL, de Azevedo-Martins AC, Albano RM, de Souza W, Frases S: Comprehensive analysis of the cellulolytic system reveals its potential for deconstruction of lignocellulosic biomass in a novel Streptomyces sp. Appl Microbiol Biotecnol 2016;101:301-319.
[PubMed]
32.
Pruesse E, Peplies J, Glöckner FO: SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012;28:1823-1829.
[PubMed]
33.
Rakotoarivonina H, Hermant B, Monthe N, Rémond C: The hemicellulolytic enzyme arsenal of Thermobacillus xylanilyticus depends on the composition of biomass used for growth. Microb Cell Fact 2012;11:159-170.
[PubMed]
34.
Rhee MS, Wei L, Sawhney N, Rice JD, St. John FJ, Hurlbert JC, Preston JF: Engineering the xylan utilization system in Bacillus subtilis for production of acidic xylo-oligosaccharides. Appl Environ Microbiol 2014;80:917-927.
[PubMed]
35.
Sawhney N, Crooks C, Chow V, Preston JF, St John FJ: Genomic and transcriptomic analysis of carbohydrate utilization by Paenibacillus sp. JDR-2: systems for bioprocessing plant polysaccharides. BMC Genomics 2016;17:131.
[PubMed]
36.
Shi P, Tian J, Yuan T, Liu X, Huang H, Bai Y, Yang P, Chen X, Wu N, Yao B: Paenibacillus sp. strain E18 bifunctional xylanase-glucanase with a single catalytic domain. Appl Environ Microbiol 2010;76:3620-3624.
[PubMed]
37.
St John FJ, Preston JF, Pozharski E: Novel structural features of xylanase A1 from Paenibacillus sp. JDR-2. J Struct Biol 2012;180:303-311.
[PubMed]
38.
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S: MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 2013;30:2725-2729.
[PubMed]
39.
Teather RM, Wood PJ: Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl Environ Microbiol 1982;43:777-780.
[PubMed]
40.
Ugwuanyi JO, Harvey LM, McNeil B: Protein enrichment of corn cob heteroxylan waste slurry by thermophilic aerobic digestion using Bacillus stearothermophilus. Bioresour Technol 2008;99:6974-6985.
[PubMed]
You do not currently have access to this content.