Infection of phyllosphere (stems, leaves, husks, and grains) by pathogenic fungi reduces the wheat yield and grain quality. Detection of the main wheat pathogenic fungi provides information about species composition and allows effective and targeted plant treatment. Since conventional procedures for the detection of these organisms are unreliable and time consuming, diagnostic DNA-based methods are required. Nucleic acid amplification technologies are independent of the morphological and biochemical characteristics of fungi. Microorganisms do not need to be cultured. Therefore, a number of PCR-based methodologies have been developed for the identification of key pathogenic fungi, such as Fusarium spp., Puccinia spp., Zymoseptoria tritici, Parastagonospora nodorum, Blumeria graminis f. sp. tritici, and Pyrenophora tritici-repentis. This article reviews frequently used DNA regions for fungus identification and discusses already known PCR assays for detection of the aforementioned wheat pathogens. We demonstrate that PCR-based wheat pathogen identification assays require further research. In particular, the number of diagnostic tests for Fusarium graminearum, Puccinia spp., and P. tritici-repentis are insufficient.

1.
Abramova SL, Ryazantsev DY, Voinova TM, Zavriev SK: Diagnostics of phytopathogen fungi Septoria tritici and Stagonospora nodorum by fluorescent amplification-based specific hybridization (FLASH) PCR. Rus J of Bioorg Chem 2008;34:97-102.
[PubMed]
2.
Ali S, Gladieux P, Leconte M, Gautier A, Justesen AF, Hovmøller MS, et al: Origin, migration routes and worldwide popular genetic structure of the wheat yellow rust pathogen Puccinia striiformis f. sp. tritici. PLoS Pathog 2014;10:e1003903.
[PubMed]
3.
Aoki T, O'Donnell K: Morphological and molecular characterization of Fusarium pseudograminearum sp. nov., formerly recognized as the group 1 population of F. graminearum. Mycologia 1999;91:597-609.
4.
Aoki T, O'Donnell K, Geiser DM: Systematic of key phytopathogenic Fusarium species: current status and future challenges. J Gen Plant Pathol 2014;80:189-201.
5.
Atkins SD, Clark IM: Fungal molecular diagnostics: a mini review. J Appl Genet 2004;45:3-15.
[PubMed]
6.
Barnes CW, Szabo LJ: Detection and identification of four common rust pathogens of cereals and grasses using real-time polymerase chain reaction. Phytopathology 2007;97:717-727.
[PubMed]
7.
Baturo-Cieśniewska A, Suchorzyńska M: Verification of the effectiveness of SCAR (sequence characterized amplified region) primers for the identification of Polish strains of Fusarium culmorum and their potential ability to produce B-trichothecenes and zearalenone. Int J Food Microbiol 2011;148:168-176.
[PubMed]
8.
Beck JJ, Barnett CJ: Detection of Fusarium species infecting corn using the polymerase chain reaction. US Patent Application No 200330113722. 2003.
9.
Beck JJ, Ligon LM: Polymerase chain reaction assays for detection of Stagonospara nodorum and Septoria tritici in wheat. Phytopatology 1995;85:319-324.
10.
Bellemain E, Carlsen T, Brochmann C, Coissac E, Taberlet P, Kauserud H: ITS as an environmental DNA barcode for fungi: an in silico approach reveals potential PCR biases. BMC Microbiol 2010;10:189-198.
[PubMed]
11.
Bennett FGA: Resistance to powdery mildew in wheat: a review of its use in agriculture and breeding programmes. Plant Pathol 1984;33:279-300.
12.
Berlin A, Djurle A, Samils B, Yuen J: Genetic variation in Puccinia graminis collected from oats, rye, and barberry. Phytopathology 2012;102:1006-1012.
[PubMed]
13.
Bhathal JSL, Speijers J: Yield reduction in wheat in relation to leaf disease from yellow (tan) spot and Septoria nodorum blotch. Eur J Plant Pathol 2003;109:35-443.
14.
Biazio GRD, Leite GGS, Tessmann DJ, Barbosa-Tessmann IP: A new PCR approach for the identification of Fusarium graminearum. Braz J Microbiol 2008;39:554-560.
[PubMed]
15.
Blixt E, Olson Å, Högberg N, Djurle A, Yuen J: Mating type distribution and genetic structure are consistent with sexual recombination in the Swedish population of Phaeosphaeria nodorum. Plant Pathol 2008;57:634-641.
16.
Bluhm BH, Flaherty JE, Cousin MA, Woloshuk CP: Multiplex polymerase chain reaction assay for the differential detection of trichothecene- and fumonisin-producing species of Fusarium in cornmeal. J Food Prot 2002;65:955-1961.
[PubMed]
17.
Bottalico A, Perrone G: Toxigenic Fusarium species and mycotoxins associated with head blight in small-grain cereals in Europe. Eur J Plant Pathol 2002;108:611-624.
18.
Cao LH, Xu SC, Chen WQ, Liu TG, Lin RM: Molecular diagnosis and detection of Puccinia triticina in China (in Chinese, with English abstract). Acta Phytopathol Sin 2007;34:561-566.
19.
Castañares E, Albuquerque DR, Dinolfo MI, Pinto VR, Patriarca A, Stenglein SA: Trichothecene genotypes and production profiles of Fusarium graminearum isolates obtained from barley cultivated in Argentina. Int J Food Microbiol 2014;179:57-63.
[PubMed]
20.
Chen S, Cao YY, Li TY: Development of a specific SCAR marker to race 21C3CTH of Puccinia graminis f. sp. tritici in China. Int J Agric Biol 2015;17:1200-1206.
21.
Chevrier D, Rasmusse SR, Gues-Jon JL: PCR product quantification by non-radioactive hybridization procedures using an oligonucleotide covalently bound to microwells. Mol Cell Probes 1993;7:187-197.
[PubMed]
22.
Consolo VF, Albani CM, Berón CM, Salerno GL, Cordo CA: A conventional PCR technique to detect Septoria tritici in wheat seeds. Australas Plant Pathol 2009;38:222-227.
23.
Cooke DEL, Schena L, Cacciola SO: Tools to detect, identify and monitor Phytophthora species in natural ecosystems. J Plant Pathol 2007;89:13-28.
24.
Covarelli L, Beccari G, Salvi S: Infection by mycotoxigenic fungal species and mycotoxin contamination of maize grain in Umbria, central Italy. Food Chem Toxicol 2011;49:2365-2369.
[PubMed]
25.
Demeke T, Clear RM, Patrick SK, Gaba D: Species specific PCR-based assays for the detection of Fusarium species and a comparison with the whole seed agar plate method and trichothecene analysis. Int J Food Microbiol 2005;103:271-284.
[PubMed]
26.
De Wolf ED, Lollato R, Whitworth RJ: Wheat Variety Disease and Insect Ratings. Manhattan, Kansas State University, 2016.
27.
Doohan FM, Parry DW, Jenkinson P, Nicholson P: The use of species-specific PCR-based assays to analyze Fusarium earblight of wheat. Plant Pathol 1998;47:197-205.
28.
Edel V, Steinberg C, Gautheron N, Alabouvette C: Evaluation of restriction analysis of polymerase chain reaction (PCR)-amplified ribosomal DNA for the identification of Fusarium species. Mycol Res 1997;101:179-187.
29.
Edwards SG, O'Callaghan J, Dobson ADW: PCR-based detection and quantification of mycotoxigenic fungi. Mycol Res 2002;106:1005-1025.
30.
Eyal Z, Scharen AL, Prescott JM, van Ginkel M: The Septoria diseases of wheat: concepts and methods of disease management. Mexico City, CIMMYT, 1987.
31.
Fones H, Gurr S: The impact of Septoria tritici Blotch disease on wheat: an EU perspective. Fungal Genet Biol 2015;79:3-7.
[PubMed]
32.
Food and Agriculture Organization of the United Nations: FAOSTAT data: food and agricultural commodities production. 2016. http://faostat.fao.org (accessed June 27, 2016).
33.
Fraaije BA, Lovell DJ, Coelho JM, Baldwin S, Hollomon DW: PCR-based assays to assess wheat varietal resistance to blotch (Septoria tritici and Stagonospora nodorum) and rust (Puccinia striiformis and Puccinia recondita) diseases. Eur J Plant Pathol 2001;107:905-917.
34.
Fraaije BA, Lovell DJ, Rohel EA, Hollomon DW: Rapid detection and diagnosis of Septoria tritici epidemics in wheat using a polymerase chain reaction/PicoGreen assay. J Appl Microbiol 1999;86:701-708.
35.
Frank JA, Ayers JE: Effect of triadimenol seed treatment on powdery mildew epidemics on winter wheat. Phytopathology 1986;76:254-257.
36.
Gaffoor I, Trail F: Characterization of two polyketide synthase genes involved in zearalenone biosynthesis in Gibberella zeae. Appl Environ Microbiol 2006;72:1793-1799.
[PubMed]
37.
Gao L, Yu HX, Shen HM, Li C, Liu TG, Liu B, et al: Development of SCAR markers and an SYBR green assay to detect Puccinia striiformis f. sp. tritici in infected wheat leaves. Plant Dis 2016;100:1840-1847.
38.
Glass NL, Donalson GC: Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microb 1995;31:1323-1330.
[PubMed]
39.
Goyal A, Prasal R: Some important diseases and their impact on wheat production; in Arya A, Perelló AE (eds): Management of Fungal Plant Pathogens. Oxford, Center for Agriculture and Bioscience International, 2010, pp 362-372.
40.
Guo JR, Schnieder F, Verreet JA: Presymptomatic and quantitative detection of Mycosphaerella graminicola development in wheat using a real-time PCR assay. FEMS Microbiol Lett 2006;262:223-229.
[PubMed]
41.
Howlett BJ, Brownlee AG, Guest DI, Adcock GJ, McFadden GI: The 5S ribosomal RNA gene is linked to the large and small subunit ribosomal RNA genes in the oomycetes, Phytophthora vignae, P. cinnamomi, P. megasperma f. sp. glycinea and Saprolegnia ferax. Curr Genet 1992;22:455-461.
[PubMed]
42.
Hudcovicova M, Matusinsky P, Gubis J, Leisova-Svobodova L, Heinonen U, Ondreickova K, et al: DNA markers for identification of Pyrenophora tritici-repentis and detection of genetic diversity among its isolates. Rom Agric Res 2015;32:263-272.
43.
Hughes KW, Petersen RH, Lickey EB: Using heterozygosity to estimate a percentage DNA sequence similarity for environmental species' delimitation across basidiomycete fungi. New Phytol 2009;182:795-798.
[PubMed]
44.
Ioos R, Fourrier C, Wilson V, Webb K, Schereffer JL, de Labrouhe DT: An optimized duplex real-time PCR tool for sensitive detection of the quarantine oomycete Plasmopara halstedii in sunflower seeds. Phytopathology 2012;9:908-917.
[PubMed]
45.
Jimenez M, Rodriguez S, Mateo JJ, Gil JV, Mateo R: Characterization of Gibberella fujikuroi complex isolates by fumonisin B-1 and B-2 analysis and by RAPD and restriction analysis of PCR-amplified internal transcribed spacers of ribosomal DNA. Syst Appl Microbiol 2000;23:546-555.
[PubMed]
46.
Jurado M, Vaźquez C, Marín S, Sanchis V, Gonzalez-Jaén MT: PCR-based strategy to detect contamination with mycotoxigenic Fusarium species in maize. Syst Appl Microbiol 2006;29:681-689.
[PubMed]
47.
Jurado M, Vázquez C, Patiño B, González-Jaén MT: PCR detection assays for the trichothecene-producing species Fusarium graminearum, Fusarium culmorum, Fusarium poae, Fusarium equiseti and Fusarium sporotrichioides. Syst Appl Microbiol 2005;28:562-568.
[PubMed]
48.
Karlsson I, Friberg H, Steinberg C, Persson P: Fungicide effects on fungal community composition in the wheat phyllosphere. PLoS One 2014;9:e111786.
[PubMed]
49.
Keon J, Antoniw J, Carzaniga R, Deller S, Ward JL, Baker JM, et al: Transcriptional adaptation of Mycosphaerella graminicola to programmed cell death (PCD) of its susceptible wheat host. Mol Plant Microbe Interact 2007;20:178-193.
[PubMed]
50.
Kolmer JA: Tracking wheat rust on a continental scale. Curr Opin Plant Biol 2005;8:441-449.
[PubMed]
51.
Kolmer JA: Leaf rust of wheat: pathogen biology, variation and host resistance. Forests 2013;4:70-84.
52.
Konstantinova P, Yli-Mattila T: IGS-RFLP analysis and development of molecular markers for identification of Fusarium poae, Fusarium langsethiae, Fusarium sporotrichioides and Fusarium kyushuense. Int J Food Microbiol 2004;95:321-331.
[PubMed]
53.
Kotowicz NK, Frac M, Lipiec J: The importance of fusarium fungi in wheat cultivation - pathogenicity and mycotoxins production: a review. J Anim Plant Sci 2014;21:3326-3243.
54.
Kulik T, Fordoński G, Pszczółkowska A, Płodzień K, Łapiński M: Development of PCR assay based on ITS2 rDNA polymorphism for the detection and differentiation of Fusarium sporotrichioides. FEMS Microbiol Lett 2004;239:181-186.
[PubMed]
55.
Kuzdraliński A, Solarska E, Mazurkiewicz J: Mycotoxin content of organic and conventional oats from southeastern Poland. Food Control 2013;33:68-72.
56.
Lamari L, Strelkov SE, Yahyaoui A, Orabi J, Smith RB: The identification of two new races of Pyrenophora tritici-repentis from the host center of diversity confirms a one-to-one relationship in tan spot of wheat. Phytopathology 2003;93:391-396.
[PubMed]
57.
Leite GM, Magan N, Medina Á: Comparison of different bead-beating RNA extraction strategies: an optimized method for filamentous fungi. J Microbiol Methods 2012;88:413-418.
[PubMed]
58.
Li S, Tam YK, Hartman GL: Molecular differentiation of Fusarium solani f. sp. glycines from other F. solani based on mitochondrial small subunit rDNA sequences. Phytopathology 2000;90:491-497.
[PubMed]
59.
Lihua C, Shichang X, Ruiming L, Taiguo L, Wanquan C: Early molecular diagnosis and detection of Puccinia striiformis f. sp. tritici in China. Lett Appl Microbiol 2008;46:501-506.
[PubMed]
60.
Liu TG, Wang X, Gao L, Liu B, Chen WQ, Xiang WS: A FIASCO-based approach for detection and diagnosis of Puccinia graminis f. sp. tritici in China. J Integrat Agric 2014;13:24-38.
61.
Ma Z, Michailides TJ: A PCR-based technique for identification of Fusicoccum sp. from pistachio and various other hosts in California. Plant Dis 2002;86:515-520.
62.
Ma Z, Yoshimura M, Holtz B, Michailides TJ: Characterization and PCR-based detection of benzimidazole-resistant isolates of Monilinia laxa in California. Pest Manag Sci 2005;61:449-457.
[PubMed]
63.
Malkus A, Reszka E, Chang CJ, Arseniuk E, Chang PFL, Ueng PP: Sequence diversity of β-tubulin (tubA) gene in Phaeosphaeria nodorum and P. avenaria. FEMS Microbiol Lett 2005;249:49-56.
[PubMed]
64.
Mavragani D, Hamel C, Vujanovic V: Species-specific PCR-DGGE markers to distinguish Pyrenophora species associated to cereal seeds. Fungal Biol 2011;115:169-175.
[PubMed]
65.
McCartney HA, Foster SJ, Fraaije BA, Ward E: Molecular diagnostics for fungal plant pathogens. Pest Manag Sci 2003;59:129-142.
[PubMed]
66.
McKay GJ, Egan D, Morris E, Brown AE: Identification of benzimidazole resistance in Cladobotryum dendroides using a PCR based method. Mycol Res 1998;102:671-676.
67.
Mishra PK, Fox RTV, Culham A: Development of a PCR-based assay for rapid and reliable identification of pathogenic Fusaria. FEMS Microbiol Lett 2003;218:329-332.
[PubMed]
68.
Mulé G, Logrieco A, Stea G, Bottalico A: Clustering of trichothecene-producing Fusarium strains determined from 28S ribosomal DNA sequences. Appl Environ Microbiol 1997;63:1843-1846.
[PubMed]
69.
Mulé G, Susca A, Stea G, Moretti A: A species-specific PCR assay based on the calmodulin partial gene for identification of Fusarium verticillioides, F. proliferatum and F. subglutinans. Eur J Plant Pathol 2004;110:495-502.
70.
Mullis KB, Faloona FA: Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol 1987;155:335-350.
[PubMed]
71.
Nazar RN, Hu X, Schmidt D, Culham D, Robb J: Potential use of PCR-amplified ribosomal intergenic sequences in the detection and differentiation of verticillium wilt pathogens. Physiol Mol Plant Pathol 1991;39:1-11.
72.
Nicholson P, Simpson DR, Weston G, Rezanoor HN, Lees AK, Parry DW, et al: Detection and quantification of Fusarium culmorum and Fusarium graminearum in cereals using PCR assays. Physiol Mol Plant Pathol 1998;53:17-37.
73.
Niessen L: Loop-mediated isothermal amplification-based detection of Fusarium graminearum. Methods Mol Biol 2013;968:177-193.
[PubMed]
74.
Niessen L, Schmidt H, Vogel RF: The use of tri5 gene-sequences for PCR detection and taxonomy of trichothecene-producing species in the Fusarium section Sporotrichiella. Int J Food Microbiol 2004;95:305-319.
[PubMed]
75.
Oerke EC: Crop losses to pests. J Agric Sci 2016;144:31-43.
76.
Olson Å, Stenlid J: Pathogenic fungal species hybrids infecting plants. Microbes Infect 2002;4:1353-1359.
[PubMed]
77.
Ouellet T, Seifert KA: Genetic-characterization of Fusarium graminearum strains using RAPD and PCR amplification. Phytopathology 1993; 83:1003-1007.
78.
Parry DW, Jenkinson P, McLeod L: Fusarium ear blight (scab) in small grain cereals: a review. Plant Pathol 1995;44:207-238.
79.
Parry DW, Nicholson P: Development of a PCR assay to detect Fusarium poae in wheat. Plant Pathol 1996;45:383-391.
80.
Poppe S, Dorsheimer L, Happel P, Stukenbrock EH: Rapidly evolving genes are key players in host specialization and virulence of the fungal wheat pathogen Zymoseptoria tritici (Mycosphaerella graminicola). PLoS Pathog 2015;11:e1005055.
[PubMed]
81.
Pramateftaki PV, Antoniou PP, Typas MA: The complete DNA sequence of the nuclear ribosomal RNA gene complex of Verticillium dahliae: intraspecific heterogeneity within the intergenic spacer region. Fungal Genet Biol 2000;29:19-27.
[PubMed]
82.
Quellet T, Seifert KA: Genetic characterization of Fusarium graminearum strains using RAPD and PCR amplification. Phytopathology 1993;83:1003-1007.
83.
Rees RG, Platz GJ, Mayer RJ: Susceptibility of Australian wheats to Pyrenophora tritici-repentis. Aust J Agric Res 1988;39:141-151.
84.
Ronaghi M: Pyrosequencing sheds light on DNA sequencing. Genome Res 2001;11:3-11.
[PubMed]
85.
Rondan-Duenas JC, Panzetta-Dutari GM, Gardenal CN: Specific requirements for PCR amplification of long mitochondrial A+T-rich DNA. Biotechniques 1999;27:258-260.
[PubMed]
86.
Ryazantsev DY, Abramova SL, Evstratova SV, Gagkaeva TY, Zavriev SK, FLASH-PCR diagnostics of toxigenic fungi of the genus Fusarium. Russ J Bioorg Chem 2008;34:716-772.
87.
Saari EE, Prescott JM: World distribution in relation to economic losses; in Roelfs AP, Bushnel WR (eds): The Cereal Rusts: Diseases, Distribution, Epidemiology and Control. Orlando, Academic Press, 1985, vol 2, pp 259-298.
88.
Samborski DJ: Wheat leaf rust; in Roelfs AP, Bushnel WR (eds): The Cereal Rusts: Diseases, Distribution, Epidemiology and Control. Orlando, Academic Press, 1985, vol 2, pp 39-59.
89.
Sanoubar R, Bauer A, Seigner L: Detection, identification and quantification of Fusarium graminearum and Fusarium culmorum in wheat kernels by PCR techniques. J Plant Pathol Microbiol 2015;6:287.
90.
Santamaria M, Vicario S, Pappadà G, Scioscia G, Scazzocchio C, Saccone C: Towards barcode markers in fungi: an intron map of Ascomycota mitochondria. BMC Bioinformatics 2009;10:S15.
[PubMed]
91.
Schena L, Nicosia MG, Li D, Sanzani SM, Faedda R, Ippolito A, et al: Development of quantitative PCR detection methods for phytopathogenic fungi and oomycetes. J Plant Pathol 2013;95:7-24.
92.
Schilling AG, Möller EM, Geiger HH: RAPDs of Fusarium culmorum and F. graminearum: application for genotyping and species identification; in Schots A, Dewey FM, Oliver RP (eds): Modern Assays for Plant Pathogenic Fungi. Oxford, Center for Agriculture and Bioscience International, 1994, pp 47-56.
93.
Schilling AG, Möller EM, Geiger HH: Polymerase chain reaction-based assays for species-specific detection of Fusarium culmorum, F. graminearum and F. avenaceum. Mol Plant Pathol 1996;86:515-522.
94.
Shaw MW, Bearchell SJ, Fitt BDL, Fraaije BA: Long-term relationships between environment and abundance in wheat of Phaeosphaeria nodorum and Mycosphaerella graminicola. New Phytol 2008;177:229-238.
[PubMed]
95.
Shetty NP, Mehrabi R, Lutken H, Haldrup A, Kema GH, Collinge DB, et al: Role of hydrogen peroxide during the interaction between the hemibiotrophic fungal pathogen Septoria tritici and wheat. New Phytol 2007;174:637-647.
[PubMed]
96.
Singh RP, Singh PK, Rutkoski J, Hodson DP, He X, Jørgenssen LN, et al: Disease impact on wheat yield potential and prospects of genetic control. Annu Rev Phytopathol 2016;54:303-322.
[PubMed]
97.
Smith HC, Smith M: Surveys of powdery mildew in wheat and an estimate of national yield losses. NZ J Exp Agr 1974;2:441-445.
98.
Smith ME, Douhan GW, Rizzo DM: Intra-specific and intrasporocarp ITS variation of ectomycorrhizal fungi as assessed by rDNA sequencing of sporocarps and pooled ecotomycorrhizal roots from a Quercus woodland. Mycorrhiza 2007;18:15-22.
[PubMed]
99.
Solomon PS, Lowe RGT, Tan KC, Waters ODC, Oliver RP: Stagonospora nodorum: cause of Stagonospora nodorum blotch of wheat. Mol Plant Pathol 2006;7:47-156.
[PubMed]
100.
Stobbe AH, Daniels J, Espindola AS, Verma R, Ochoa-Corona UMF, Garzon C, et al: E-probe Diagnostic Nucleic acid Analysis (EDNA): a theoretical approach for handling of next generation sequencing data for diagnostics. J Microbiol Meth 2013;94:356-366.
[PubMed]
101.
Strelkov SE, Lamari L: Host-parasite interactions in tan spot (Pyrenophora tritici-repentis) of wheat. Can J Plant Pathol 2003;25:339-349.
102.
Su X, Wu Y, Sifri CD, Wellems TE: Reduced extension temperatures required for PCR amplification of extremely A+T-rich DNA. Nucleic Acids Res 1996;24:1574-1575.
[PubMed]
103.
Torp M, Nirenberg HI: Fusarium langsethiae sp. nov. on cereals in Europe. Int J Food Microbiol 2004;95:247-256.
[PubMed]
104.
Turner AS, Lees AK, Rezanoor HN, Nicholson P: Refinement of PCR-detection of Fusarium avenaceum and evidence from DNA marker studies for phonetic relatedness to Fusarium tricinctum. Plant Pathol 1998;47:278-288.
105.
Wang X, Liu TG, Xiang WS, Chen WQ: Development of a SSR molecular marker for Puccinia graminis f. sp. tritici. Sci Agri Sin 2011;44:4593-4599.
106.
Wang X, Tang C, Chen J, Buchenauer H, Zhao J, Han Q, et al: Detection of Puccinia striiformis in latently infected wheat leaves by nested polymerase chain reaction. J Phytopathol 2009;157:490-493.
107.
Wang X, Zhao J, Han Q, Huang L, Kang Z: The development of a PCR-based method for detecting Puccinia striiformis latent infections in wheat leaves. Eur J Plant Pathol 2008;120:241-247.
108.
Weiss MV: Compendium of Wheat Diseases, ed 2. St. Paul, APS Press, 1987.
109.
White TJ, Bruns T, Lee S. Tailor J: Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics; in Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds): PCR Protocols: a Guide to Methods and Applications. New York, Academic Press Inc, 1990, pp 315-322.
110.
Wilson A, Simpson D, Chandler E, Jennings P, Nicholson P: Development of PCR assays for the detection and differentiation of Fusarium sporotrichioides and Fusarium langsethiae. FEMS Microbiol Lett 2004;233:69-76.
[PubMed]
111.
Wolny-Koładka K, Lenart-Boroń A, Boroń P: Species composition and molecular assessment of the toxigenic potential in the population of Fusarium spp. isolated from ears of winter wheat in southern Poland. J Appl Bot Food Qual 2015;88:139-144.
112.
Yli-Mattila T, Paavanen S, Hannukkala A, Parikka P, Tahvonen R, Karjalainen R: Isozyme and RAPD-PCR analyses of Fusarium avenaceum strains from Finland. Plant Pathol 1996;45:126-134.
113.
Yoder OC: Toxins in pathogenesis. Annu Rev Phytopathol 1980;8:103-129.
114.
Zeng X, Luo Y, Zheng Y, Duan X, Zhou Y: Detection of latent infection of wheat leaves caused by Blumeria graminis f. sp. tritici using nested PCR. J Phytopathol 2010;158:227-235.
115.
Zeng XW, Luo Y, Zhou YL, Duan XY: PCR detection of Blumeria graminis f. sp. tritici based on the sequences of rDNA ITS. Acta Phytopathol Sin 2008;38:211-214.
116.
Zhao J, Wang XJ, Chen CQ, Huang LL, Kang ZS: A PCR-based assay for detection of Puccinia striiformis f. sp. tritici in wheat. Plant Dis 2007;91:1669-1674.
117.
Zheng WM, Chen SY, Kang ZS, Wang Y, Li ZQ, Wu LR: Specificity and stability of PSR (Puccinia striiformis Repeat) sequence. Acta Phytopathol Sin 2000a;30:222-225.
118.
Zheng WM, Liu F, Kang ZS, Chen SY, Li ZQ, Wu LR: AFLP analysis of predominant races of Puccinia striiformis in China. Progr Nat Sci 2000b;10:532-537.
119.
Zhu JX: Analysis of enhancement of wheat powdery mildew intensity in China and control strategies (in Chinese). J Anhui Agric Sci 1992;20:174-180.
You do not currently have access to this content.