Aromatic hydrocarbons such as benzene and polycyclic aromatic hydrocarbons (PAHs) are very slowly degraded without molecular oxygen. Here, we review the recent advances in the elucidation of the first known degradation pathways of these environmental hazards. Anaerobic degradation of benzene and PAHs has been successfully documented in the environment by metabolite analysis, compound-specific isotope analysis and microcosm studies. Subsequently, also enrichments and pure cultures were obtained that anaerobically degrade benzene, naphthalene or methylnaphthalene, and even phenanthrene, the largest PAH currently known to be degradable under anoxic conditions. Although such cultures grow very slowly, with doubling times of around 2 weeks, and produce only very little biomass in batch cultures, successful proteogenomic, transcriptomic and biochemical studies revealed novel degradation pathways with exciting biochemical reactions such as for example the carboxylation of naphthalene or the ATP-independent reduction of naphthoyl-coenzyme A. The elucidation of the first anaerobic degradation pathways of naphthalene and methylnaphthalene at the genetic and biochemical level now opens the door to studying the anaerobic metabolism and ecology of anaerobic PAH degraders. This will contribute to assessing the fate of one of the most important contaminant classes in anoxic sediments and aquifers.

1.
Abu Laban N, Selesi D, Jobelius C, Meckenstock RU: Anaerobic benzene degradation by Gram-positive sulfate-reducing bacteria. FEMS Microbiol Ecol 2009;68:300-311.
[PubMed]
2.
Abu Laban N, Selesi D, Rattei T, Tischler P, Meckenstock RU: Identification of enzymes involved in anaerobic benzene degradation by a strictly anaerobic iron-reducing enrichment culture. Environ Microbiol 2010;12:2783-2796.
[PubMed]
3.
Ahn Y-B, Chae J-C, Zylstra GJ, Häggblom MM: Degradation of phenol via phenylphosphate and carboxylation to 4-hydroxybenzoate by a newly isolated strain of the sulfate-reducing bacterium Desulfobacterium anilini. Appl Environ Microbiol 2009;75:4248-4253.
[PubMed]
4.
Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997;25:3389-3402.
[PubMed]
5.
Anderson RT, Lovley DR: Naphthalene and benzene degradation under Fe(III)-reducing conditions in petroleum-contaminated aquifers. Bioremediat J 1999;3:121-135.
6.
Anderson RT, Lovley DR: Anaerobic bioremediation of benzene under sulfate-reducing conditions in a petroleum-contaminated aquifer. Environ Sci Technol 2000;34:2261-2266.
7.
Anderson RT, Rooney-Varga JN, Gaw CV, Lovley DR: Anaerobic benzene oxidation in the Fe(III) reduction zone of petroleum-contaminated aquifers. Environ Sci Technol 1998;32:1222-1229.
8.
Annweiler E, Materna A, Safinowski M, Kappler A, Richnow HH, Michaelis W, Meckenstock RU: Anaerobic degradation of 2-methylnaphthalene by a sulfate-reducing enrichment culture. Appl Environ Microbiol 2000;66:5329-5333.
[PubMed]
9.
Annweiler E, Michaelis W, Meckenstock RU: Identical ring cleavage products during anaerobic degradation of naphthalene, 2-methylnaphthalene, and tetralin indicate a new metabolic pathway. Appl Environ Microbiol 2002;68:852-858.
[PubMed]
10.
Baedecker MJ, Cozzarelli IM, Eganhouse RP, Siegel DI, Bennett PC: Crude oil in a shallow sand and gravel aquifer - III. Biogeochemical reactions and mass balance modeling in anoxic groundwater. Appl Geochem 1993;8:569-586.
11.
Bahr A, Fischer A, Vogt C, Bombach P: Evidence of polycyclic aromatic hydrocarbon biodegradation in a contaminated aquifer by combined application of in situ and laboratory microcosms using 13C-labelled target compounds. Water Res 2015;69:100-109.
[PubMed]
12.
Bedessem ME, Swoboda-Colberg NG, Colberg PJS: Naphthalene mineralization coupled to sulfate reduction in aquifer-derived enrichments. FEMS Microbiol Lett 1997;152:213-218.
13.
Beller HR, Kane SR, Legler TC, Alvarez PJJ: A real-time polymerase chain reaction method for monitoring anaerobic, hydrocarbon-degrading bacteria based on a catabolic gene. Environ Sci Technol 2002;36:3977-3984.
[PubMed]
14.
Beller HR, Kane SR, Legler TC, McKelvie JR, Sherwood Lollar B, Pearson F, Balser L, Mackay DM: Comparative assessments of benzene, toluene, and xylene natural attenuation by quantitative polymerase chain reaction analysis of a catabolic gene, signature metabolites, and compound-specific isotope analysis. Environ Sci Technol 2008;42:6065-6072.
[PubMed]
15.
Bendrat K, Buckel W: Cloning, sequencing and expression of the gene encoding the carboxytransferase subunit of the biotin-dependent Na+ pump glutaconyl-CoA decarboxylase from Acidaminococcus fermentans in Escherichia coli. Eur J Biochem 1993;211:697-702.
[PubMed]
16.
Berdugo-Clavijo C, Dong X, Soh J, Sensen CW, Gieg LM: Methanogenic biodegradation of two-ringed polycyclic aromatic hydrocarbons. FEMS Microbiol Ecol 2012;81:124-133.
[PubMed]
17.
Bergmann F, Selesi D, Weinmaier T, Tischler P, Rattei T, Meckenstock RU: Genomic insights into the metabolic potential of the polycyclic aromatic hydrocarbon degrading sulfate-reducing Deltaproteobacterium N47. Environ Microbiol 2011a;13:1125-1137.
[PubMed]
18.
Bergmann FD, Abu Laban NMFH, Meyer AH, Elsner M, Meckenstock RU: Dual (C, H) isotope fractionation in anaerobic low molecular weight (poly)aromatic hydrocarbon (PAH) degradation: potential for field studies and mechanistic implications. Environ Sci Technol 2011b;45:6947-6953.
[PubMed]
19.
Bergmann FD, Selesi D, Meckenstock RU: Identification of new enzymes potentially involved in anaerobic naphthalene degradation by the sulfate-reducing enrichment culture N47. Arch Microbiol 2011c;193:241-250.
[PubMed]
20.
Berlendis S, Lascourreges J-F, Schraauwers B, Sivadon P, Magot M: Anaerobic biodegradation of BTEX by original bacterial communities from an underground gas storage aquifer. Environ Sci Technol 2010;44:3621-3628.
[PubMed]
21.
Birch A, Subba-Rao G: Reductions by metal-ammonia solutions and related reagents. Adv Org Chem 1972;8:1-65.
22.
Birktoft JJ, Holden HM, Hamlin R, Xuong NH, Banaszak LJ: Structure of L-3-hydroxyacyl-coenzyme A dehydrogenase: preliminary chain tracing at 2.8-A resolution. Proc Natl Acad Sci USA 1987;84:8262-8266.
[PubMed]
23.
Boll M: Dearomatizing benzene ring reductases. J Mol Microbiol Biotechnol 2005;10:132-142.
[PubMed]
24.
Boll M, Fuchs G: Benzoyl-coenzyme A reductase (dearomatizing), a key enzyme of anaerobic aromatic metabolism. Eur J Biochem 1995;234:921-933.
[PubMed]
25.
Boll M, Fuchs G: Identification and characterization of the natural electron donor ferredoxin and of FAD as a possible prosthetic group of benzoyl-CoA reductase (dearomatizing), a key enzyme of anaerobic aromatic metabolism. Eur J Biochem 1998;251:946-954.
[PubMed]
26.
Boll M, Fuchs G, Heider J: Anaerobic oxidation of aromatic compounds and hydrocarbons. Curr Opin Chem Biol 2002;6:604-611.
[PubMed]
27.
Boll M, Fuchs G, Meier C, Trautwein A, Lowe DJ: EPR and Mössbauer studies of benzoyl-CoA reductase. J Biol Chem 2000;275:31857-31868.
[PubMed]
28.
Boll M, Löffler C, Morris BEL, Kung JW: Anaerobic degradation of homocyclic aromatic compounds via arylcarboxyl-coenzyme A esters: organisms, strategies and key enzymes. Environ Microbiol 2014;16:612-627.
[PubMed]
29.
Botton S, Parsons J: Degradation of BTX by dissimilatory iron-reducing cultures. Biodegradation 2007;18:371-381.
[PubMed]
30.
Botton S, van Harmelen M, Braster M, Parsons JR, Roling WF: Dominance of Geobacteraceae in BTX-degrading enrichments from an iron-reducing aquifer. FEMS Microbiol Ecol 2007;62:118-130.
[PubMed]
31.
Braune A, Bendrat K, Rospert S, Buckel W: The sodium ion translocating glutaconyl-CoA decarboxylase from Acidaminococcus fermentans: cloning and function of the genes forming a second operon. Mol Microbiol 1999;31:473-487.
[PubMed]
32.
Breese K, Boll M, Alt-Morbe J, Schagger H, Fuchs G: Genes coding for the benzoyl-CoA pathway of anaerobic aromatic metabolism in the bacterium Thauera aromatica. Eur J Biochem 1998;256:148-154.
[PubMed]
33.
Breitenstein A, Wiegel J, Haertig C, Weiss N, Andreesen JR, Lechner U: Reclassification of Clostridium hydroxybenzoicum as Sedimentibacter hydroxybenzoicus gen. nov., comb. nov., and description of Sedimentibacter saalensis sp. nov. Int J Syst Evol Microbiol 2002;52:801-807.
[PubMed]
34.
Buckel W, Kung JW, Boll M: The benzoyl-coenzyme A reductase and 2-hydroxyacyl-coenzyme A dehydratase radical enzyme family. Chembiochem 2014;15:2188-2194.
[PubMed]
35.
Buckel W, Semmler R: A biotin-dependent sodium pump: glutaconyl-CoA decarboxylase from Acidaminococcus fermentans. FEBS Lett 1982;148:35-38.
[PubMed]
36.
Buckel W, Semmler R: Purification, characterisation and reconstitution of glutaconyl-CoA decarboxylase, a biotin-dependent sodium pump from anaerobic bacteria. Eur J Biochem 1983;136:427-434.
[PubMed]
37.
Burland SM, Edwards EA: Anaerobic benzene biodegradation linked to nitrate reduction. Appl Environ Microbiol 1999;65:529-533.
[PubMed]
38.
Caldwell ME, Suflita JM: Detection of phenol and benzoate as intermediates of anaerobic benzene biodegradation under different terminal electron-accepting conditions. Environ Sci Technol 2000;34:1216-1220.
39.
Caldwell ME, Tanner RS, Suflita JM: Microbial metabolism of benzene and the oxidation of ferrous iron under anaerobic conditions: implications for bioremediation. Anaerobe 1999;5:595-603.
40.
Callaghan AV, Davidova IA, Savage-Ashlock K, Parisi VA, Gieg LM, Suflita JM, Kukor JJ, Wawrik B: Diversity of benzyl- and alkylsuccinate synthase genes in hydrocarbon- impacted environments and enrichment cultures. Environ Sci Technol 2010;44:7287-7294.
[PubMed]
41.
Callaghan AV, Wawrik B, Ni Chadhain SM, Young LY, Zylstra GJ: Anaerobic alkane-degrading strain AK-01 contains two alkylsuccinate synthase genes. Biochem Biophys Res Commun 2008;366:142-148.
[PubMed]
42.
Chakraborty R, Coates JD: Hydroxylation and carboxylation -two crucial steps of anaerobic benzene degradation by Dechloromonas strain RCB. Appl Environ Microbiol 2005;71:5427-5432.
[PubMed]
43.
Chang B-V, Chang IT, Yuan SY: Anaerobic degradation of phenanthrene and pyrene in mangrove sediment. Bull Environ Contam Toxicol 2008;80:145-149.
[PubMed]
44.
Chang BV, Shiung LC, Yuan SY: Anaerobic biodegradation of polycyclic aromatic hydrocarbon in soil. Chemosphere 2002;48:717-724.
[PubMed]
45.
Chang W, Um Y, Holoman TP: Polycyclic aromatic hydrocarbon (PAH) degradation coupled to methanogenesis. Biotechnol Lett 2006;28:425-430.
[PubMed]
46.
Chow KT, Pope MK, Davies J: Characterization of a vanillic acid non-oxidative decarboxylation gene cluster from Streptomyces sp. D7. Microbiology 1999;145:2393-2403.
[PubMed]
47.
Christensen N, Batstone DJ, He Z, Angelidaki I, Schmidt JE: Removal of polycyclic aromatic hydrocarbons (PAHs) from sewage sludge by anaerobic degradation. Water Sci Technol 2004;50:237-244.
[PubMed]
48.
Coates JD, Anderson RT, Woodward JC, Phillips EJP, Lovley DR: Anaerobic hydrocarbon degradation in petroleum-contaminated harbor sediments under sulfate-reducing and artificially imposed iron-reducing conditions. Environ Sci Technol 1996;30:2784-2789.
49.
Coates JD, Chakraborty R, Lack JG, O'Connor SM, Cole KA, Bender KS, Achenbach LA: Anaerobic benzene oxidation coupled to nitrate reduction in pure culture by two strains of Dechloromonas. Nature 2001;411:1039-1043.
[PubMed]
50.
Coplen TB: Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results. Rapid Commun Mass Spectrom 2011;25:2538-2560.
[PubMed]
51.
Cox GB, Young IG, McCann LM, Gibson F: Biosynthesis of ubiquinone in Escherichia coli K-12: location of genes affecting the metabolism of 3-octaprenyl-4-hydroxybenzoic acid and 2-octaprenylphenol. J Bacteriol 1969;99:450-458.
[PubMed]
52.
Cozzarelli IM, Baedecker MJ, Eganhouse RP, Goerlitz DF: The geochemical evolution of low-molecular-weight organic acids derived from the degradation of petroleum contaminants in groundwater. Geochim Cosmochim Acta 1994;58:863-877.
53.
Davidova IA, Gieg LM, Duncan KE, Suflita JM: Anaerobic phenanthrene mineralization by a carboxylating sulfate-reducing bacterial enrichment. ISME J 2007;1:436-442.
[PubMed]
54.
Dean JA: Handbook of Organic Chemistry. New York, McGraw-Hill, 1987.
55.
Días E: Bacterial degradation of aromatic pollutants: a paradigm of metabolic versatility. Int Microbiol 2004;7:173-180.
[PubMed]
56.
DiDonato RJ Jr, Young ND, Butler JE, Chin KJ, Hixson KK, Mouser P, Lipton MS, DeBoy R, Methe BA: Genome sequence of the deltaproteobacterial strain NaphS2 and analysis of differential gene expression during anaerobic growth on naphthalene. PLoS One 2010;5:e14072.
[PubMed]
57.
Ding B, Schmeling S, Fuchs G: Anaerobic metabolism of catechol by the denitrifying bacterium Thauera aromatica - a result of promiscuous enzymes and regulators? J Bacteriol 2008;190:1620-1630.
[PubMed]
58.
Dolfing J, Xu A, Gray ND, Larter SR, Head IM: The thermodynamic landscape of methanogenic PAH degradation. Microb Biotechnol 2009;2:566-574.
[PubMed]
59.
Ebenau-Jehle C, Boll M, Fuchs G: 2-Oxoglutarate:NADP+ oxidoreductase in Azoarcus evansii: properties and function in electron transfer reactions in aromatic ring reduction. J Bacteriol 2003;185:6119-6129.
[PubMed]
60.
Eberlein C, Estelmann S, Seifert J, von Bergen M, Muller M, Meckenstock RU, Boll M: Identification and characterization of 2-naphthoyl-coenzyme A reductase, the prototype of a novel class of dearomatizing reductases. Mol Microbiol 2013a;88:1032-1039.
[PubMed]
61.
Eberlein C, Johannes J, Mouttaki H, Sadeghi M, Golding BT, Boll M, Meckenstock RU: ATP-dependent/-independent enzymatic ring reductions involved in the anaerobic catabolism of naphthalene. Environ Microbiol 2013b;15:1832-1841.
[PubMed]
62.
Edwards EA, Grbić-Galić D: Complete mineralization of benzene by aquifer microorganisms under strictly anaerobic conditions. Appl Environ Microbiol 1992;58:2663-2666.
[PubMed]
63.
Egland PG, Pelletier DA, Dispensa M, Gibson J, Harwood CS: A cluster of bacterial genes for anaerobic benzene ring biodegradation. Proc Natl Acad Sci USA 1997;94:6484-6489.
[PubMed]
64.
Elshahed MS, Bhupathiraju VK, Wofford NQ, Nanny MA, McInerney MJ: Metabolism of benzoate, cyclohex-1-ene carboxylate, and cyclohexane carboxylate by ‘Syntrophus aciditrophicus' strain SB in syntrophic association with H2-using microorganisms. Appl Environ Microbiol 2001;67:1728-1738.
[PubMed]
65.
Elsner M: Stable isotope fractionation to investigate natural transformation mechanisms of organic contaminants: principles, prospects and limitations. J Environ Monit 2010;12:2005-2031.
[PubMed]
66.
Elsner M, McKelvie J, Lacrampe Couloume G, Sherwood Lollar B: Insight into methyl tert-butyl ether (MTBE) stable isotope fractionation from abiotic reference experiments. Environ Sci Technol 2007;41:5693-5700.
[PubMed]
67.
Eriksson M, Sodersten E, Yu Z, Dalhammar G, Mohn WW: Degradation of polycyclic aromatic hydrocarbons at low temperature under aerobic and nitrate-reducing conditions in enrichment cultures from northern soils. Appl Environ Microbiol 2003;69:275-284.
[PubMed]
68.
Estelmann S, Blank I, Feldmann A, Boll M: Two distinct old yellow enzymes are involved in naphthyl ring reduction during anaerobic naphthalene degradation. Mol Microbiol 2015;95:162-172.
[PubMed]
69.
Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S, Kuypers MM, Schreiber F, Dutilh BE, Zedelius J, de Beer D, Gloerich J, Wessels HJ, van Alen T, Luesken F, Wu ML, van de Pas-Schoonen KT, Op den Camp HJ, Janssen-Megens EM, Francoijs KJ, Stunnenberg H, Weissenbach J, Jetten MS, Strous M: Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 2010;464:543-548.
[PubMed]
70.
Fischer A, Herklotz I, Herrmann S, Thullner M, Weelink SAB, Stams AJM, Schlömann M, Richnow H-H, Vogt C: Combined carbon and hydrogen isotope fractionation investigations for elucidating benzene biodegradation pathways. Environ Sci Technol 2008;42:4356-4363.
[PubMed]
71.
Foght J: Anaerobic biodegradation of aromatic hydrocarbons: pathways and prospects. J Mol Microbiol Biotechnol 2008;72:93-120.
[PubMed]
72.
Forster-Fromme K, Jendrossek D: Identification and characterization of the acyclic terpene utilization gene cluster of Pseudomonas citronellolis. FEMS Microbiol Lett 2006;264:220-225.
[PubMed]
73.
Forster-Fromme K, Jendrossek D: Catabolism of citronellol and related acyclic terpenoids in pseudomonads. Appl Microbiol Biotechnol 2010;87:859-869.
[PubMed]
74.
Fuchs G: Anaerobic metabolism of aromatic compounds. Ann NY Acad Sci 2008;1125:82-99.
[PubMed]
75.
Fuchs G, Boll M, Heider J: Microbial degradation of aromatic compounds - from one strategy to four. Nat Rev Microbiol 2011;9:803-816.
[PubMed]
76.
Gallus C, Schink B: Anaerobic degradation of pimelate by newly isolated denitrifying bacteria. Microbiology 1994;140:409-416.
[PubMed]
77.
Galushko A, Minz D, Schink B, Widdel F: Anaerobic degradation of naphthalene by a pure culture of a novel type of marine sulphate-reducing bacterium. Environ Microbiol 1999;1:415-420.
[PubMed]
78.
Gorny N, Schink B: Anaerobic degradation of catechol by Desulfobacterium sp. strain Cat2 proceeds via carboxylation to protocatechuate. Appl Environ Microbiol 1994;60:3396-3400.
[PubMed]
79.
Grbić-Galić D, Vogel TM: Transformation of toluene and benzene by mixed methanogenic cultures. Appl Environ Microbiol 1987;53:254-260.
[PubMed]
80.
Griebler C, Safinowski M, Vieth A, Richnow HH, Meckenstock RU: Combined application of stable carbon isotope analysis and specific metabolites determination for assessing in situ degradation of aromatic hydrocarbons in a tar oil-contaminated aquifer. Environ Sci Technol 2004;38:617-631.
[PubMed]
81.
Harrison FH, Harwood CS: The pimFABCDE operon from Rhodopseudomonas palustris mediates dicarboxylic acid degradation and participates in anaerobic benzoate degradation. Microbiology 2005;151:727-736.
[PubMed]
82.
Härtel U, Eckel E, Koch J, Fuchs G, Linder D, Buckel W: Purification of glutaryl-CoA dehydrogenase from Pseudomonas sp., an enzyme involved in the anaerobic degradation of benzoate. Arch Microbiol 1993;159:174-181.
[PubMed]
83.
He Z, Wiegel J: Purification and characterization of an oxygen-sensitive reversible 4-hydroxybenzoate decarboxylase from Clostridium hydroxybenzoicum. Eur J Biochem 1995;229:77-82.
[PubMed]
84.
Heider J: Adding handles to unhandy substrates: anaerobic hydrocarbon activation mechanisms. Curr Opin Chem Biol 2007;11:188-194.
[PubMed]
85.
Heider J, Spormann AM, Beller HR, Widdel F: Anaerobic bacterial metabolism of hydrocarbons. FEMS Microbiol Rev 1998;22:459-473.
86.
Herrmann S, Kleinsteuber S, Chatzinotas A, Kuppardt S, Lueders T, Richnow H-H, Vogt C: Functional characterization of an anaerobic benzene-degrading enrichment culture by DNA stable isotope probing. Environ Microbiol 2010;12:401-411.
[PubMed]
87.
Holmes DE, Risso C, Smith JA, Lovley DR: Anaerobic oxidation of benzene by the hyperthermophilic archaeon Ferroglobus placidus. Appl Environ Microbiol 2011;77:5926-5933.
[PubMed]
88.
Hunkeler D, Meckenstock RU, Sherwood Lollar B, Schmidt TC, Wilson JT: A Guide for Assessing Biodegradation and Source Identification of Organic Ground Water Contaminants using Compound Specific Isotope Analysis (CSIA). Ada, Office of Research and Development, National Risk Management Research Laboratory, US Environmental Protection Agency, 2008.
89.
Jackson BE, McInerney MJ: Anaerobic microbial metabolism can proceed close to thermodynamic limits. Nature 2002;415:454-456.
[PubMed]
90.
Jacob U, Mack M, Clausen T, Huber R, Buckel W, Messerschmidt A: Glutaconate CoA-transferase from Acidaminococcus fermentans: the crystal structure reveals homology with other CoA-transferases. Structure 1997;5:415-426.
[PubMed]
91.
Jahn MK, Haderlein SB, Meckenstock RU: Anaerobic degradation of benzene, toluene, ethylbenzene, and o-xylene in sediment-free iron-reducing enrichment cultures. Appl Environ Microbiol 2005;71:3355-3358.
[PubMed]
92.
Jiménez N, Curiel JA, Reverón I, de las Rivas B, Muñoz R: Uncovering the Lactobacillus plantarum WCFS1 gallate decarboxylase involved in tannin degradation. Appl Environ Microbiol 2013;79:4253-4263.
[PubMed]
93.
Kasai Y Takahata Y, Manefield M, Watanabe K: RNA-based stable isotope probing and isolation of anaerobic benzene-degrading bacteria from gasoline-contaminated groundwater. Appl Environ Microbiol 2006;72:3586-3592.
[PubMed]
94.
Kazumi J, Caldwell ME, Suflita JM, Lovley DR, Young LY: Anaerobic degradation of benzene in diverse anoxic environments. Environ Sci Technol 1997;31:813-818.
95.
Kim JJ, Wang M, Paschke R: Crystal structures of medium-chain acyl-CoA dehydrogenase from pig liver mitochondria with and without substrate. Proc Natl Acad Sci USA 1993;90.
[PubMed]
96.
Kleemann R, Meckenstock RU: Anaerobic naphthalene degradation by Gram-positive, iron-reducing bacteria. FEMS Microbiol Ecol 2011;78:488-496.
[PubMed]
97.
Kleinsteuber S, Schleinitz KM, Breitfeld J, Harms H, Richnow HH, Vogt C: Molecular characterization of bacterial communities mineralizing benzene under sulfate-reducing conditions. FEMS Microbiol Ecol 2008;66:143-157.
[PubMed]
98.
Knowles J: The mechanism of biotin-dependent enzymes. Annu Rev Biochem 1989;58:195-221.
[PubMed]
99.
Kümmel S, Herbst F-A, Bahr A, Duarte M, Pieper DH, Jehmlich N, Seifert J, von Bergen M, Bombach P, Richnow HH, Vogt C: Anaerobic naphthalene degradation by sulfate-reducing Desulfobacteraceae from various anoxic aquifers. FEMS Microbiol Ecol 2015;91:fiv006.
[PubMed]
100.
Kunapuli U, Griebler C, Beller HR, Meckenstock RU: Identification of intermediates formed during anaerobic benzene degradation by an iron-reducing enrichment culture. Environ Microbiol 2008;10:1703-1712.
[PubMed]
101.
Kunapuli U, Lueders T, Meckenstock RU: The use of stable isotope probing to identify key iron-reducing microorganisms involved in anaerobic benzene degradation. ISME J 2007;1:643-653.
[PubMed]
102.
Kung JW, Baumann S, von Bergen M, Muller M, Hagedoorn PL, Hagen WR, Boll M: Reversible biological Birch reduction at an extremely low redox potential. J Am Chem Soc 2010;132:9850-9856.
[PubMed]
103.
Kung JW, Löffler C, Dörner K, Heintz D, Gallien S, Van Dorsselaer A, Friedrich T, Boll M: Identification and characterization of the tungsten-containing class of benzoyl-coenzyme A reductases. Proc Natl Acad Sci USA 2009;106:17687-17692.
[PubMed]
104.
Kuntze K, Shinoda Y, Moutakki H, McInerney MJ, Vogt C, Richnow HH, Boll M: 6-Oxocyclohex-1-ene-1-carbonyl-coenzyme A hydrolases from obligately anaerobic bacteria: characterization and identification of its gene as a functional marker for aromatic compounds degrading anaerobes. Environ Microbiol 2008;10:1547-1556.
[PubMed]
105.
Lack A, Fuchs G: Carboxylation of phenylphosphate by phenol carboxylase, an enzyme system of anaerobic phenol metabolism. J Bacteriol 1992;174:3629-3636.
[PubMed]
106.
Laempe D, Eisenreich W, Bacher A, Fuchs G: Cyclohexa-1,5-diene-1-carboxyl-CoA hydratase, an enzyme involved in anaerobic metabolism of benzoyl-CoA in the denitrifying bacterium Thauera aromatica. Eur J Biochem 1998;255:618-627.
[PubMed]
107.
Laempe D, Jahn M, Fuchs G: 6-Hydroxycyclohex-1-ene-1-carbonyl-CoA dehydrogenase and 6-oxocyclohex-1-ene-1-carbonyl-CoA hydrolase, enzymes of the benzoyl-CoA pathway of anaerobic aromatic metabolism in the denitrifying bacterium Thauera aromatica. Eur J Biochem 1999;263:420-429.
[PubMed]
108.
Larentis M, Hoermann K, Lueders T: Fine-scale degrader community profiling over an aerobic/anaerobic redox gradient in a toluene-contaminated aquifer. Environ Microbiol Rep 2013;5:225-234.
[PubMed]
109.
Li F, Hinderberger J, Seedorf H, Zhang J, Buckel W, Thauer RK: Coupled ferredoxin and crotonyl coenzyme A (CoA) reduction with NADH catalyzed by the butyryl-CoA dehydrogenase/Etf complex from Clostridium kluyveri. J Bacteriol 2008;190:843-850.
[PubMed]
110.
Löffler C, Kuntze K, Vazquez JR, Rugor A, Kung JW, Böttcher A, Boll M: Occurrence, genes and expression of the W/Se-containing class II benzoyl-coenzyme A reductases in anaerobic bacteria. Environ Microbiol 2011;13:696-709.
[PubMed]
111.
Lopez Barragan MJ, Carmona M, Zamarro MT, Thiele B, Boll M, Fuchs G, Garcia JL, Diaz E: The bzd gene cluster, coding for anaerobic benzoate catabolism, in Azoarcus sp. strain CIB. J Bacteriol 2004;186:5762-5774.
[PubMed]
112.
Lovley DR: Anaerobic benzene degradation. Biodegradation 2000;11:107-116.
[PubMed]
113.
Lovley DR, Coates JD, Blunt-Harris EL, Phillips EJP, Woodward JC: Humic substances as electron acceptors for microbial respiration. Nature 1996a;382:445-448.
114.
Lovley DR, Coates JD, Woodward JC, Phillips E: Benzene oxidation coupled to sulfate reduction. Appl Environ Microbiol 1995;61:953-958.
[PubMed]
115.
Lovley DR, Woodward JC: Mechanisms for chelator stimulation of microbial Fe(III)-oxide reduction. Chem Geol 1996;132:19-24.
116.
Lovley DR, Woodward JC, Chapelle FH: Stimulated anoxic biodegradation of aromatic hydrocarbons using Fe(III) ligands. Nature 1994;370:128-131.
[PubMed]
117.
Lovley DR, Woodward JC, Chapelle FH: Rapid anaerobic benzene oxidation with a variety of chelated Fe(III) forms. Appl Environ Microbiol 1996b;62:288-291.
[PubMed]
118.
Luo F, Gitiafroz R, Devine CE, Gong Y, Hug LA, Raskin L, Edwards EA: Metatranscriptome of an anaerobic benzene-degrading nitrate-reducing enrichment culture reveals involvement of carboxylation in benzene ring activation. Appl Environ Microbiol 2014;80:4095-4107.
[PubMed]
119.
Lupa B, Lyon D, Gibbs MD, Reeves RA, Wiegel J: Distribution of genes encoding the microbial non-oxidative reversible hydroxyarylic acid decarboxylases/phenol carboxylases. Genomics 2005;86:342-351.
[PubMed]
120.
Lupa B, Lyon D, Shaw LN, Sieprawska-Lupa M, Wiegel J: Properties of the reversible nonoxidative vanillate/4-hydroxybenzoate decarboxylase from Bacillus subtilis. Can J Microbiol 2008;54:75-81.
[PubMed]
121.
Madigan MT, Martinko JM, Dunlap PV, Clark DP: Brock - Biology of Microorganisms, ed 12. Upper Saddle River, Pearson Prentice Hall, 2008.
122.
Maillacheruvu KY, Pathan IA: Biodegradation of naphthalene, phenanthrene, and pyrene under anaerobic conditions. J Environ Sci Health A Tox Hazard Subst Environ Eng 2009;44:1315-1326.
[PubMed]
123.
Majora DW, Mayfielda CI, Barkerb JF: Biotransformation of benzene by denitrification in aquifer sand. Ground Water 1988;26:8-14.
124.
Mancini SA, Devine CE, Elsner M, Nandi ME, Ulrich AC, Edwards EA, Sherwood Lollar B: Isotopic evidence suggests different initial reaction mechanisms for anaerobic benzene biodegradation. Environ Sci Technol 2008;42:8290-8296.
[PubMed]
125.
Mancini SA, Ulrich AC, Lacrampe-Couloume G, Sleep B, Edwards EA, Lollar BS: Carbon and hydrogen isotopic fractionation during anaerobic biodegradation of benzene. Appl Environ Microbiol 2003;69:191-198.
[PubMed]
126.
Masumoto H, Kurisu F, Kasuga I, Tourlousse DM, Furumai H: Complete mineralization of benzene by a methanogenic enrichment culture and effect of putative metabolites on the degradation. Chemosphere 2012;86:822-828.
[PubMed]
127.
Mathieu M, Modis Y, Zeelen JP, Engel CK, Abagyan RA, Ahlberg A, Rasmussen B, Lamzin VS, Kunau WH, Wierenga RK: The 1.8 angstrom crystal structure of the dimeric peroxisomal 3-ketoacyl-CoA thiolase of Saccharomyces cerevisiae: implications for substrate binding and reaction mechanism. J Mol Biol 1997;273:714-728.
[PubMed]
128.
Mavrovouniotis ML: Group contributions for estimating standard Gibbs energies of formation of biochemical compounds in aqueous solution. Biotechnol Bioeng 1990;36:1070-1082.
[PubMed]
129.
McFarland MJ, Sims RC: Thermodynamic framework for evaluating PAH degradation in the subsurface. Ground Water 1991;29:885-896.
130.
Meckenstock RU, Annweiler E, Michaelis W, Richnow HH, Schink B: Anaerobic naphthalene degradation by a sulfate-reducing enrichment culture. Appl Environ Microbiol 2000;66:2743-2747.
[PubMed]
131.
Meckenstock RU, Elsner M, Griebler C, Lueders T, Stumpp C, Aamand J, Agathos SN, Albrechtsen H-J, Bastiaens L, Bjerg PL, Boon N, Dejonghe W, Huang WE, Schmidt SI, Smolders E, Sørensen SR, Springael D, van Breukelen BM: Biodegradation: updating the concepts of control for microbial cleanup in contaminated aquifers. Environ Sci Technol 2015;49:7073-7081.
[PubMed]
132.
Meckenstock RU, Mouttaki H: Anaerobic degradation of non-substituted aromatic hydrocarbons. Curr Opin Biotechnol 2011;22:406-414.
[PubMed]
133.
Meckenstock RU, Richnow HH: Natural stable isotope fractionation for the assessment of hydrocarbon degradation; in Timmis KN (ed): Handbook of Hydrocarbon and Lipid Microbiology. Berlin, Springer, 2010, pp 3603-3611.
134.
Meckenstock RU, Safinowski M, Griebler C: Anaerobic degradation of polycyclic aromatic hydrocarbons. FEMS Microbiol Ecol 2004;49:27-36.
[PubMed]
135.
Meganathan R: Ubiquinone biosynthesis in microorganisms. FEMS Microbiol Lett 2001;203:131-139.
[PubMed]
136.
Mihelcic JR, Luthy RG: Degradation of polycyclic aromatic hydrocarbon compounds under various redox conditions in soil-water systems. Appl Environ Microbiol 1988;54:1182-1187.
[PubMed]
137.
Möbitz H, Boll M: A Birch-like mechanism in enzymatic benzoyl-CoA reduction: a kinetic study of substrate analogues combined with an ab initio model. Biochemistry 2002;41:1752-1758.
[PubMed]
138.
Morasch B, Richnow HH, Vieth A, Schink B, Meckenstock RU: Stable isotope fractionation caused by glycyl radical enzymes during bacterial degradation of aromatic compounds. Appl Environ Microbiol 2004;70:2935-2940.
[PubMed]
139.
Morris BEL, Gissibl A, Kümmel S, Richnow H-H, Boll M: A PCR-based assay for the detection of anaerobic naphthalene degradation. FEMS Microbiol Lett 2014;354:55-59.
[PubMed]
140.
Mouttaki H, Johannes J, Meckenstock RU: Identification of naphthalene carboxylase as a prototype for the anaerobic activation of non-substituted aromatic hydrocarbons. Environ Microbiol 2012;14:2770-2774.
[PubMed]
141.
Müller JA, Schink B: Initial steps in the fermentation of 3-hydroxybenzoate by Sporotomaculum hydroxybenzoicum. Arch Microbiol 2000;173:288-295.
[PubMed]
142.
Musat F, Galushko A, Jacob J, Widdel F, Kube M, Reinhardt R, Wilkes H, Schink B, Rabus R: Anaerobic degradation of naphthalene and 2-methylnaphthalene by strains of marine sulfate-reducing bacteria. Environ Microbiol 2009;11:209-219.
[PubMed]
143.
Musat F, Widdel F: Anaerobic degradation of benzene by a marine sulfate-reducing enrichment culture, and cell hybridization of the dominant phylotype. Environ Microbiol 2008;10:10-19.
[PubMed]
144.
Nales M, Butler BJ, Edwards EA: Anaerobic benzene biodegradation: a microcosm survey. Bioremediat J 1998;2:125-144.
145.
O'Leary MH: Catalytic strategies in enzymic carboxylation and decarboxylation; in David SS (ed): The Enzymes. New York, Academic Press, 1992, vol 20, pp 235-269.
146.
Park SJ, Lee SY: Identification and characterization of a new enoyl coenzyme A hydratase involved in biosynthesis of medium-chain-length polyhydroxyalkanoates in recombinant Escherichia coli. J Bacteriol 2003;185:5391-5397.
[PubMed]
147.
Pelletier DA, Harwood CS: 2-Ketocyclohexanecarboxyl coenzyme A hydrolase, the ring cleavage enzyme required for anaerobic benzoate degradation by Rhodopseudomonas palustris. J Bacteriol 1998;180:2330-2336.
[PubMed]
148.
Pelletier DA, Harwood CS: 2-Hydroxycyclohexanecarboxyl coenzyme A dehydrogenase, an enzyme characteristic of the anaerobic benzoate degradation pathway used by Rhodopseudomonas palustris. J Bacteriol 2000;182:2753-2760.
[PubMed]
149.
Perrotta JA, Harwood CS: Anaerobic metabolism of cyclohex-1-ene-1-carboxylate, a proposed intermediate of benzoate degradation, by Rhodopseudomonas palustris. Appl Environ Microbiol 1994;60:1775-1782.
[PubMed]
150.
Peters F, Shinoda Y, McInerney MJ, Boll M: Cyclohexa-1,5-diene-1-carbonyl-coenzyme A (CoA) hydratases of Geobacter metallireducens and Syntrophus aciditrophicus: evidence for a common benzoyl-CoA degradation pathway in facultative and strict anaerobes. J Bacteriol 2007;189:1055-1060.
[PubMed]
151.
Phelps CD, Kazumi J, Young LY: Anaerobic degradation of benzene in BTX mixtures dependent on sulfate reduction. FEMS Microbiol Lett 1996;145:433-437.
[PubMed]
152.
Phelps CD, Zhang X, Young LY: Use of stable isotopes to identify benzoate as a metabolite of benzene degradation in a sulphidogenic consortium. Environ Microbiol 2001;3:600-603.
[PubMed]
153.
Philipp B: Bacterial degradation of bile salts. Appl Microbiol Biotechnol 2011;89:903-915.
[PubMed]
154.
Rockne KJ, Chee-Sanford JC, Sanford RA, Hedlund BP, Staley JT, Strand SE: Anaerobic naphthalene degradation by microbial pure cultures under nitrate-reducing conditions. Appl Environ Microbiol 2000;66:1595-1601.
[PubMed]
155.
Rockne KJ, Strand SE: Anaerobic biodegradation of naphthalene, phenanthrene, and biphenyl by a denitrifying enrichment culture. Water Res 2001;35:291-299.
[PubMed]
156.
Rothermich MM, Hayes LA, Lovley DR: Anaerobic, sulfate-dependent degradation of polycyclic aromatic hydrocarbons in petroleum-contaminated harbor sediment. Environ Sci Technol 2002;36:4811-4817.
[PubMed]
157.
Safinowski M, Meckenstock RU: Enzymatic reactions in anaerobic 2-methylnaphthalene degradation by the sulphate-reducing enrichment culture N47. FEMS Microbiol Lett 2004;240:99-104.
[PubMed]
158.
Safinowski M, Meckenstock RU: Methylation is the initial reaction in anaerobic naphthalene degradation by a sulfate-reducing enrichment culture. Environ Microbiol 2006;8:347-352.
[PubMed]
159.
Salinero K, Keller K, Feil W, Feil H, Trong S, Di Bartolo G, Lapidus A: Metabolic analysis of the soil microbe Dechloromonas aromatica str. RCB: indications of a surprisingly complex life-style and cryptic anaerobic pathways for aromatic degradation. BMC Genomics 2009;10:351.
[PubMed]
160.
Sawers RG: Of mothballs and old yellow enzymes. Mol Microbiol 2015;95:157-161.
[PubMed]
161.
Schleinitz KM, Schmeling S, Jehmlich N, von Bergen M, Harms H, Kleinsteuber S, Vogt C, Fuchs G: Phenol degradation in the strictly anaerobic iron-reducing bacterium Geobacter metallireducens GS-15. Appl Environ Microbiol 2009;75:3912-3919.
[PubMed]
162.
Schmeling S, Fuchs G: Anaerobic metabolism of phenol in proteobacteria and further studies of phenylphosphate carboxylase. Arch Microbiol 2009;191:869-878.
[PubMed]
163.
Schmeling S, Narmandakh A, Schmitt O, Gad'on N, Schühle K, Fuchs G: Phenylphosphate synthase: a new phosphotransferase catalyzing the first step in anaerobic phenol metabolism in Thauera aromatica. J Bacteriol 2004;186:8044-8057.
[PubMed]
164.
Schmidt TC, Jochmann MA: Origin and fate of organic compounds in water: characterization by compound-specific stable isotope analysis. Annu Rev Anal Chem 2012;5:133-155.
[PubMed]
165.
Schnell S, Bak F, Pfennig N: Anaerobic degradation of aniline and dihydroxybenzenes by newly isolated sulfate-reducing bacteria and description of Desulfobacterium anilini. Arch Microbiol 1989;152:556-563.
[PubMed]
166.
Schnell S, Schink B: Anaerobic aniline degradation via reductive deamination of 4-aminobenzoyl-CoA in Desulfobacterium anilini. Arch Microbiol 1991;155:183-190.
167.
Schöcke L, Schink B: Energetics and biochemistry of fermentative benzoate degradation by Syntrophus gentianae. Arch Microbiol 1999;171:331-337.
168.
Schuchmann K, Muller V: A bacterial electron-bifurcating hydrogenase. J Biol Chem 2012;287:31165-31171.
[PubMed]
169.
Schühle K, Fuchs G: Phenylphosphate carboxylase: a new C-C lyase involved in anaerobic phenol metabolism in Thauera aromatica. J Bacteriol 2004;186:4556-4567.
[PubMed]
170.
Schühle K, Gescher J, Feil U, Paul M, Jahn M, Schagger H, Fuchs G: Benzoate-coenzyme A ligase from Thauera aromatica: an enzyme acting in anaerobic and aerobic pathways. J Bacteriol 2003;185:4920-4929.
[PubMed]
171.
Selesi D, Jehmlich N, von Bergen M, Schmidt F, Rattei T, Tischler P, Lueders T, Meckenstock RU: Combined genomic and proteomic approaches identify gene clusters involved in anaerobic 2-methylnaphthalene degradation in the sulfate-reducing enrichment culture N47. J Bacteriol 2010;192:295-306.
[PubMed]
172.
Selesi D, Meckenstock RU: Anaerobic degradation of the aromatic hydrocarbon biphenyl by a sulfate-reducing enrichment culture. FEMS Microbiol Ecol 2009;68:86-93.
[PubMed]
173.
Siegert M, Cichocka D, Herrmann S, Gründger F, Feisthauer S, Richnow H-H, Springael D, Krüger M: Accelerated methanogenesis from aliphatic and aromatic hydrocarbons under iron- and sulfate-reducing conditions. FEMS Microbiol Lett 2011;315:6-16.
[PubMed]
174.
Staats M, Braster M, Roling WF: Molecular diversity and distribution of aromatic hydrocarbon-degrading anaerobes across a landfill leachate plume. Environ Microbiol 2011;13:1216-1227.
[PubMed]
175.
Suzuki D, Li Z, Cui X, Zhang C, Katayama A: Reclassification of Desulfobacterium anilini as Desulfatiglans anilini comb. nov. within Desulfatiglans gen. nov., and description of a 4-chlorophenol-degrading sulfate-reducing bacterium, Desulfatiglans parachlorophenolica sp. nov. Int J Syst Evol Microbiol 2014;64:3081-3086.
[PubMed]
176.
Taubert M, Vogt C, Wubet T, Kleinsteuber S, Tarkka MT, Harms H, Buscot F, Richnow H-H, von Bergen M, Seifert J: Protein-SIP enables time-resolved analysis of the carbon flux in a sulfate-reducing, benzene-degrading microbial consortium. ISME J 2012;6:2291-2301.
[PubMed]
177.
Thauer RK, Jungermann K, Decker K: Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 1977;41:100-180.
[PubMed]
178.
Thauer RK, Shima S: Methane as fuel for anaerobic microorganisms. Ann NY Acad Sci 2008;1125:158-170.
[PubMed]
179.
Thomas ST, VanderVen BC, Sherman DR, Russell DG, Sampson NS: Pathway profiling in Mycobacterium tuberculosis: elucidation of cholesterol-derived catabolite and enzymes that catalyze its metabolism. J Biol Chem 2011;286:43668-43678.
[PubMed]
180.
Thullner M, Fischer A, Richnow H-H, Wick L: Influence of mass transfer on stable isotope fractionation. Appl Microbiol Biotechnol 2013;97:441-452.
[PubMed]
181.
Trably E, Patureau D, Delgenes JP: Enhancement of polycyclic aromatic hydrocarbons removal during anaerobic treatment of urban sludge. Water Sci Technol 2003;48:53-60.
[PubMed]
182.
Ulrich AC, Beller HR, Edwards EA: Metabolites detected during biodegradation of 13C6-benzene in nitrate-reducing and methanogenic enrichment cultures. Environ Sci Technol 2005;39:6681-6691.
[PubMed]
183.
Ulrich AC, Edwards EA: Physiological and molecular characterization of anaerobic benzene-degrading mixed cultures. Environ Microbiol 2003;5:92-102.
[PubMed]
184.
Verleur N, Hettema EH, Roermund CW, Tabak HF, Wanders RJ: Transport of activated fatty acids by the peroxisomal ATP-binding-cassette transporter Pxa2 in a semi-intact yeast cell system. Eur J Biochem 1997;249:657-661.
[PubMed]
185.
Villatoro-Monzón W, Morales-Ibarria M, Velázquez E, Ramírez-Saad H, Razo-Flores E: Benzene biodegradation under anaerobic conditions coupled with metal oxides reduction. Water Air Soil Pollut 2008;192:165-172.
186.
Vogel TM, Grbić-Galić D: Incorporation of oxygen from water into toluene and benzene during anaerobic fermentative transformation. Appl Environ Microbiol 1986;52:200-202.
[PubMed]
187.
Vogt C, Gödeke S, Treutler H-C, Weiß H, Schirmer M, Richnow H-H: Benzene oxidation under sulfate-reducing conditions in columns simulating in situ conditions. Biodegradation 2007;18:625-636.
[PubMed]
188.
von Netzer F, Pilloni G, Kleindienst S, Krüger M, Knittel K, Gründger F, Lueders T: Enhanced gene detection assays for fumarate-adding enzymes allow uncovering of anaerobic hydrocarbon degraders in terrestrial and marine systems. Appl Environ Microbiol 2013;79:543-552.
[PubMed]
189.
Weiner JM, Lovley DR: Rapid benzene degradation in methanogenic sediments from a petroleum-contaminated aquifer. Appl Environ Microbiol 1998;64:1937-1939.
[PubMed]
190.
Weinert T, Huwiler SG, Kung JW, Weidenweber S, Hellwig P, Stark H-J, Biskup T, Weber S, Cotelesage JJH, George GN, Ermler U, Boll M: Structural basis of enzymatic benzene ring reduction. Nat Chem Biol 2015;11:586-591.
[PubMed]
191.
Widdel F, Knittel K, Galushko A: Anaerobic hydrocarbon-degrading microorganisms: an overview; in Timmis KN (ed): Handbook of Hydrocarbon and Lipid Microbiology. Berlin, Springer, 2010, pp 1997-2021.
192.
Wilkes H, Schwarzbauer J: Hydrocarbons: an introduction to structure, physico-chemical properties and natural occurrence; in Timmis KN (ed): Handbook of Hydrocarbon and Lipid Microbiology. Berlin, Springer, 2010, pp 1-48.
193.
Wilson BH, Smith GB, Rees JF: Biotransformations of selected alkylbenzenes and halogenated aliphatic hydrocarbons in methanogenic aquifer material: a microcosm study. Environ Sci Technol 1986;20:997-1002.
[PubMed]
194.
Wilson R, Thornton S, Mackay D: Challenges in monitoring the natural attenuation of spatially variable plumes. Biodegradation 2004;15:359-369.
[PubMed]
195.
Winderl C, Anneser B, Griebler C, Meckenstock RU, Lueders T: Depth-resolved quantification of anaerobic toluene degraders and aquifer microbial community patterns in distinct redox zones of a tar oil contaminant plume. Appl Environ Microbiol 2008;74:792-801.
[PubMed]
196.
Winderl C, Schaefer S, Lueders T: Detection of anaerobic toluene and hydrocarbon degraders in contaminated aquifers using benzylsuccinate synthase (bssA) genes as a functional marker. Environ Microbiol 2007;9:1035-1046.
[PubMed]
197.
Wipperman MF, Sampson NS, Thomas ST: Pathogen roid rage: cholesterol utilization by Mycobacterium tuberculosis. Crit Rev Biochem Mol Biol 2014;49:269-293.
[PubMed]
198.
Wischgoll S, Heintz D, Peters F, Erxleben A, Sarnighausen E, Reski R, Van Dorsselaer A, Boll M: Gene clusters involved in anaerobic benzoate degradation of Geobacter metallireducens. Mol Microbiol 2005;58:1238-1252.
[PubMed]
199.
Wischgoll S, Taubert M, Peters F, Jehmlich N, von Bergen M, Boll M: Decarboxylating and nondecarboxylating glutaryl-coenzyme A dehydrogenases in the aromatic metabolism of obligately anaerobic bacteria. J Bacteriol 2009;191:4401-4409.
[PubMed]
200.
Zhang S, Wang Q, Xie S: Stable isotope probing identifies anthracene degraders under methanogenic conditions. Biodegradation 2012a;23:221-230.
[PubMed]
201.
Zhang SY, Wang QF, Xie SG: Molecular characterization of phenanthrene-degrading methanogenic communities in leachate-contaminated aquifer sediment. Int J Environ Sci Technol 2012b;9:705-712.
202.
Zhang T, Bain TS, Nevin KP, Barlett MA, Lovley DR: Anaerobic benzene oxidation by Geobacter species. Appl Environ Microbiol 2012c;78:8304-8310.
[PubMed]
203.
Zhang T, Gannon SM, Nevin KP, Franks AE, Lovley DR: Stimulating the anaerobic degradation of aromatic hydrocarbons in contaminated sediments by providing an electrode as the electron acceptor. Environ Microbiol 2010;12:1011-1020.
[PubMed]
204.
Zhang T, Tremblay P-L, Chaurasia AK, Smith JA, Bain TS, Lovley DR: Anaerobic benzene oxidation via phenol in Geobacter metallireducens. Appl Environ Microbiol 2013;79:7800-7806.
[PubMed]
205.
Zhang X, Sullivan ER, Young LY: Evidence for aromatic ring reduction in the biodegradation pathway of carboxylated naphthalene by a sulfate reducing consortium. Biodegradation 2000;11:117-124.
[PubMed]
206.
Zhang X, Young LY: Carboxylation as an initial reaction in the anaerobic metabolism of naphthalene and phenanthrene by sulfidogenic consortia. Appl Environ Microbiol 1997;63:4759-4764.
[PubMed]
You do not currently have access to this content.