The anaerobic degradation of 4-alkylbenzoates and 4-alkyltoluenes is to date a rarely reported microbial capacity. The newly isolated Alphaproteobacterium Magnetospirillum sp. strain pMbN1 represents the first pure culture demonstrated to degrade 4-methylbenzoate completely to CO2 in a process coupled to denitrification. Differential proteogenomic studies in conjunction with targeted metabolite analyses and enzyme activity measurements elucidated a specific 4-methylbenzoyl-coenzyme A (CoA) pathway in this bacterium alongside the classical central benzoyl-CoA pathway. Whilst these two pathways are analogous, in the former the p-methyl group is retained and its 4-methylbenzoyl-CoA reductase (MbrCBAD) is phylogenetically distinct from the archetypical class I benzoyl-CoA reductase (BcrCBAD). Subsequent global regulatory studies on strain pMbN1 grown with binary or ternary substrate mixtures revealed benzoate to repress the anaerobic utilization of 4-methylbenzoate and succinate. The shared nutritional property of betaproteobacterial ‘Aromatoleum aromaticum' pCyN1 and Thauera sp. strain pCyN2 is the anaerobic degradation of the plant-derived hydrocarbon p-cymene (4-isopropyltoluene) coupled to denitrification. Notably, the two strains employ two different peripheral pathways for the conversion of p-cymene to 4-isopropylbenzoyl-CoA as the possible first common intermediate. In ‘A. aromaticum' pCyN1 a putative p-cymene dehydrogenase (CmdABC) is proposed to hydroxylate the benzylic methyl group, which is subsequently further oxidized to the CoA-thioester. In contrast, Thauera sp. strain pCyN2 employs a reaction sequence analogous to the known anaerobic toluene pathway, involving a distinct branching (4-isopropylbenzyl)succinate synthase (IbsABCDEF).

1.
Barragán MJ, Blázquez B, Zamarro MT, Mancheño JM, García JL, Díaz E, Carmona M: BzdR, a repressor that controls the anaerobic catabolism of benzoate in Azoarcus sp. CIB, is the first member of a new subfamily of transcriptional regulators. J Biol Chem 2005;280:10683-10694.
2.
Beller HR, Spormann AM, Sharma PK, Cole JR, Reinhard M: Isolation and characterization of a novel toluene-degrading, sulfate-reducing bacterium. Appl Environ Microbiol 1996;62:1188-1196.
3.
Bharadwaj VS, Dean AM, Maupin CM: Insights into the glycyl radical enzyme active site of benzylsuccinate synthase: a computational study. J Am Chem Soc 2013;135:12279-12288.
4.
Biegert T, Fuchs G: Anaerobic oxidation of toluene (analogues) to benzoate (analogues) by whole cells and by cell extracts of a denitrifying Thauera sp. Arch Microbiol 1995;163:407-417.
5.
Birch AJ: Reduction by dissolving metals. Part I. J Chem Soc 1944;430-436.
6.
Boll M: Dearomatizing benzene ring reductases. J Mol Microbiol Biotechnol 2005;10:132-142.
7.
Boll M, Fuchs G: Benzoyl-coenzyme A reductase (dearomatizing), a key enzyme of anaerobic aromatic metabolism. ATP dependence of the reaction, purification and some properties of the enzyme from Thauera aromatica strain K172. Eur J Biochem 1995;234:921-933.
8.
Boll M, Fuchs G, Lowe DJ: Single turnover EPR studies of benzoyl-CoA reductase. Biochemistry 2001;40:7612-7620.
9.
Boll M, Fuchs G, Meier C, Trautwein A, Lowe DJ: Epr and Mossbauer studies of benzoyl-CoA reductase. J Biol Chem 2000;275:31857-31868.
10.
Boll M, Löffler C, Morris BE, Kung JW: Anaerobic degradation of homocyclic aromatic compounds via arylcarboxyl-coenzyme A esters: organisms, strategies and key enzymes. Environ Microbiol 2014;16:612-267.
11.
Brackmann R, Fuchs G: Enzymes of anaerobic metabolism of phenolic compounds. 4-hydroxybenzoyl-CoA reductase (dehydroxylating) from a denitrifying Pseudomonas species. Eur J Biochem 1993;213:563-571.
12.
Breese K, Boll M, Alt-Mörbe J, Schägger H, Fuchs G: Genes coding for the benzoyl-CoA pathway of anaerobic aromatic metabolism in the bacterium Thauera aromatica. Eur J Biochem 1998;256:148-154.
13.
Buckel W, Kung JW, Boll M: The benzoyl-coenzyme A reductase and 2-hydroxyacyl-coenzyme A dehydratase radical enzyme family. Chembiochem 2014;15:2188-2194.
14.
Carmona M, Zamarro MT, Blázquez B, Durante-Rodríguez G, Juárez JF, Valderrama JA, Barragán MJL, García JL, Díaz E: Anaerobic catabolism of aromatic compounds: a genetic and genomic view. Microbiol Mol Biol Rev 2009;73:71-133.
15.
Cunane LM, Chen Z-W, Shamala N, Mathews FS, Cronin CN, McIntire WS: Structures of the flavocytochrome p-cresol methylhydroxylase and its enzyme-substrate complex: gated substrate entry and proton relays support the proposed catalytic mechanism. J Mol Biol 2000;295:357-374.
16.
DiLabio GA, Ingold KU: Solvolysis of para-substituted cumyl chlorides. Brown and Okamoto's electrophilic substituent constants revisited using continuum solvent models. J Org Chem 2004;69:1620-1624.
17.
Durante-Rodríguez G, Zamarro MT, García JL, Díaz E, Carmona M: Oxygen-dependent regulation of the central pathway for the anaerobic catabolism of aromatic compounds in Azoarcus sp. strain CIB. J Bacteriol 2006;188:2343-2354.
18.
Eaton RW: p-Cymene catabolic pathway in Pseudomonas putida F1: cloning and characterization of DNA encoding conversion of p-cymene to p-cumate. J Bacteriol 1997;179:3171-3180.
19.
Fuchs G, Boll M, Heider J: Microbial degradation of aromatic compounds - from one strategy to four. Nat Rev Microbiol 2011;9:803-816.
20.
Funk MA, Judd ET, Marsh EN, Elliott SJ, Drennan CL: Structures of benzylsuccinate synthase elucidate roles of accessory subunits in glycyl radical enzyme activation and activity. Proc Natl Acad Sci USA 2014;111:10161-10166.
21.
Häner A, Höhener P, Zeyer J: Degradation of p-xylene by a denitrifying enrichment culture. Appl Environ Microbiol 1995;61:3185-3188.
22.
Harms G, Rabus R, Widdel F: Anaerobic oxidation of the aromatic plant hydrocarbon p-cymene by newly isolated denitrifying bacteria. Arch Microbiol 1999;172:303-312.
23.
Heider J, Boll M, Breese K, Breinig S, Ebenau-Jehle C, Feil U, Gad'on N, Laempe D, Leuthner B, Mohamed ME, Schneider S, Burchhardt G, Fuchs G: Differential induction of enzymes involved in anaerobic metabolism of aromatic compounds in the denitrifying bacterium Thauera aromatica. Arch Microbiol 1998;170:120-131.
24.
Higashioka Y, Kojima H, Fukui M: Isolation and characterization of novel sulfate-reducing bacterium capable of anaerobic degradation of p-xylene. Microbes Environ 2012;27:273-277.
25.
Hopper DJ: The hydroxylation of p-cresol and its conversion to p-hydroxybenzaldehyde in Pseudomonas putida. Biochem Biophys Res Commun 1976;69:462-468.
26.
Juárez JF, Liu H, Zamarro MT, McMahon S, Liu H, Naismith JH, Eberlein C, Boll M, Carmona M, Díaz E: Unraveling the specific regulation of the central pathway for anaerobic degradation of 3-methylbenzoate. J Biol Chem 2015;290:12165-12183.
27.
Juárez JF, Zamarro MT, Eberlein C, Boll M, Carmona M, Díaz E: Characterization of the mbd cluster encoding the anaerobic 3-methylbenzoyl-CoA central pathway. Environ Microbiol 2013;15:148-166.
28.
Kloer DP, Hagel C, Heider J, Schulz GE: Crystal structure of ethylbenzene dehydrogenase from Aromatoleumaromaticum. Structure 2006;14:1377-1388.
29.
Knack D, Hagel C, Szaleniec M, Dudzik A, Salwinski A, Heider J: Substrate and inhibitor spectra of ethylbenzene dehydrogenase: perspectives on application potential and catalytic mechanism. Appl Environ Microbiol 2012;78:6475-6482.
30.
Kniemeyer O, Heider J: Ethylbenzene dehydrogenase, a novel hydrocarbon-oxidizing molybdenum/iron-sulfur/heme enzyme. J Biol Chem 2001;276:21381-21386.
31.
Kniemeyer O, Fischer T, Wilkes H, Glöckner FO, Widdel F: Anaerobic degradation of ethylbenzene by a new type of marine sulfate-reducing bacterium. Appl Environ Microbiol 2003;69:760-768.
32.
Kube M, Heider J, Hufnagel P, Kühner S, Beck A, Reinhardt R, Rabus R: Genes involved in the anaerobic degradation of toluene in a denitrifying bacterium, strain EbN1. Arch Microbiol 2004;181:182-184.
33.
Kung JW, Baumann S, von Bergen M, Müller M, Hagedoorn PL, Hagen WR, Boll M: Reversible biological Birch reduction at an extremely low redox potential. J Am Chem Soc 2010;132:9850-9856.
34.
Kuntze K, Kiefer P, Baumann S, Seifert J, von Bergen M, Vorholt JA, Boll M: Enzymes involved in the anaerobic degradation of meta-substituted halobenzoates. Mol Microbiol 2011a;82:758-769.
35.
Kuntze K, Vogt C, Richnow HH, Boll M: Combined application of PCR-based functional assays for the detection of aromatic-compound-degrading anaerobes. Appl Environ Microbiol 2011b;77:5056-5061.
36.
Laempe D, Jahn M, Breese K, Schagger H, Fuchs G: Anaerobic metabolism of 3-hydroxybenzoate by the denitrifying bacterium Thauera aromatica. J Bacteriol 2001;183:968-979.
37.
Lahme S, Eberlein C, Jarling R, Kube M, Boll M, Wilkes H, Reinhardt R, Rabus R: Anaerobic degradation of 4-methylbenzoate via a specific 4-methylbenzoyl-CoA pathway. Environ Microbiol 2012a;14:1118-1132.
38.
Lahme S, Harder J, Rabus R: Anaerobic degradation of 4-methylbenzoate by a new denitrifying bacterium, strain pMbN1. Appl Environ Microbiol 2012b;78:1606-1610.
39.
Lahme S, Trautwein K, Strijkstra A, Dörries M, Wöhlbrand L, Rabus R: Benzoate mediates the simultaneous repression of anaerobic 4-methylbenzoate and succinate utilization in Magnetospirillum sp. strain pMbN1. BMC Microbiology 2014;14:269.
40.
Leuthner B, Heider J: Anaerobic toluene catabolism of Thauera aromatica: the bbs operon codes for enzymes of β-oxidation of the intermediate benzylsuccinate. J Bacteriol 2000;182:272-277.
41.
Lochmeyer C, Koch J, Fuchs G: Anaerobic degradation of 2-aminobenzoic acid (anthranilic acid) via benzoyl-coenzyme A (CoA) and cyclohex-1-enecarboxyl-CoA in a denitrifying bacterium. J Bacteriol 1992;174:3621-3628.
42.
Löffler C, Kuntze K, Vazquez JR, Rugor A, Kung JW, Bottcher A, Boll M: Occurrence, genes and expression of the W/Se-containing class II benzoyl-coenzyme A reductases in anaerobic bacteria. Environ Microbiol 2011;13:696-709.
43.
López Barragán MJ, Carmona M, Zamarro MT, Thiele B, Boll M, Fuchs G, García JL, Díaz E: The bzd gene cluster, coding for anaerobic benzoate catabolism, in Azoarcus sp. strain CIB. J Bacteriol 2004;186:5762-5774.
44.
McMillen DF, Golden DM: Hydrocarbon bond dissociation energies. Ann Rev Phys Chem 1982;33:493-532.
45.
Möbitz H, Boll M: A Birch-like mechanism in enzymatic benzoyl-CoA reduction: a kinetic study of substrate analogues combined with an ab initio model. Biochemistry 2002;41:1752-1758.
46.
Morasch B, Meckenstock RU: Anaerobic degradation of p-xylene by a sulfate-reducing enrichment culture. Curr Microbiol 2005;51:127-130.
47.
Pérez-Pantoja D, González B, Pieper DH: Aerobic degradation of aromatic hydrocarbons; in Timmis KN (ed): Handbook of Hydrocarbon and Lipid Microbiology. Berlin, Springer, 2010, pp 800-837.
48.
Pérez-Pantoja D, Leiva-Novoa P, Donoso RA, Little C, Godoy M, Pieper DH, González B: Hierarchy of carbon source utilization in soil bacteria: hegemonic preference for benzoate in complex aromatic compound mixtures degraded by Cupriavidus pinatubonensis strain JMP134. Appl Environ Microbiol 2015;81:3914-3924.
49.
Rabus R: Biodegradation of hydrocarbons under anoxic conditions; in Ollivier B, Magot M (eds): Petroleum Microbiology. Washington, ASM Press, 2005, pp 277-299.
50.
Rabus R, Widdel F: Conversion studies with substrate analogues of toluene in a sulfate-reducing bacterium, strain Tol2. Arch Microbiol 1995;164:448-451.
51.
Rabus R, Fukui M, Wilkes H, Widdel F: Degradative capacities and 16S rRNA-targeted whole-cell hybridization of sulfate-reducing bacteria in an anaerobic enrichment culture utilizing alkylbenzenes from crude oil. Appl Environ Microbiol 1996;62:3605-3613.
52.
Rabus R, Kube M, Beck A, Widdel F, Reinhardt R: Genes involved in the anaerobic degradation of ethylbenzene in a denitrifying bacterium, strain EbN1. Arch Microbiol 2002,178:506-516.
53.
Rabus R, Kube M, Heider J, Beck A, Heitmann K, Widdel F, Reinhardt R: The genome sequence of an anaerobic aromatic-degrading denitrifying bacterium, strain EbN1. Arch Microbiol 2005;183:27-36.
54.
Rabus R, Trautwein K, Wöhlbrand L: Towards habitat-oriented systems biology of ‘Aromatoleum aromaticum' EbN1: chemical sensing, catabolic network modulation and growth control in anaerobic aromatic compound degradation. Appl Microbiol Biotechnol 2014;98:3371-3388.
55.
Rabus R, Wilkes H, Schramm A, Harms G, Behrends A, Amann R, Widdel F: Anaerobic utilization of alkylbenzenes and n-alkanes from crude oil in an enrichment culture of denitrifying bacteria affiliating with the β-subclass of Proteobacteria. Environ Microbiol 1999;1:145-157.
56.
Rotaru AE, Probian C, Wilkes H, Harder J: Highly enriched Betaproteobacteria growing anaerobically with p-xylene and nitrate. FEMS Microbiol Ecol 2010;71:460-468.
57.
Schmid G, Rene SB, Boll M: Enzymes of the benzoyl-coenzyme A degradation pathway in the hyperthermophilic archaeon Ferroglobus placidus. Environ Microbiol 2015; 17:3289-3300.
58.
Shinoda Y, Akagi J, Uchihashi Y, Hiraishi A, Yukawa H, Yurimoto H, Sakai Y, Kato N: Anaerobic degradation of aromatic compounds by Magnetospirillum strains: isolation and degradation genes. Biosci Biotechnol Biochem 2005;69:1483-1491.
59.
Strijkstra A, Trautwein K, Jarling R, Wöhlbrand L, Dörries M, Reinhardt R, Drozdowska M, Golding BT, Wilkes H, Rabus R: Anaerobic activation of p-cymene in denitrifying Betaproteobacteria: methyl group hydroxylation versus addition to fumarate. Appl Environ Microbiol 2014;80:7592-7603.
60.
Szaleniec M, Borowski T, Schühle K, Witko M, Heider J: Ab initio modeling of ethylbenzene dehydrogenase reaction mechanism. J Am Chem Soc 2010;132:6014-6024.
61.
Szaleniec M, Salwinski A, Borowski T, Heider J, Witko M: Quantum chemical modeling studies of ethylbenzene dehydrogenase activity. Int J Quantum Chem 2012;112:1990-1999.
62.
Trautwein K, Grundmann O, Wöhlbrand L, Eberlein C, Boll M, Rabus R: Benzoate mediates repression of C4-dicarboxylate utilization in ‘Aromatoleum aromaticum' EbN1. J Bacteriol 2012;194:518-528.
63.
Valderrama JA, Shingler V, Carmona M, Díaz E: AccR is a master regulator involved in carbon catabolite repression of the anaerobic catabolism of aromatic compounds in Azoarcus sp. CIB. J Biol Chem 2014;289:1892-1904.
64.
von Netzer F, Pilloni G, Kleindienst S, Krüger M, Knittel K, Gründger F, Lueders T: Enhanced gene detection assays for fumarate-adding enzymes allow uncovering of anaerobic hydrocarbon degraders in terrestrial and marine systems. Appl Environ Microbiol 2013;79:543-552.
65.
Weinert T, Huwiler SG, Kung JW, Weidenweber S, Hellwig P, Stärk H-J, Biskup T, Cotelesage JJH, George GN, Ermler U, Boll M: Structural basis of enzymatic benzene ring reduction. Nature Chem Biol 2015;11:815.
66.
Widdel F, Knittel K, Galushko A: Anaerobic hydrocarbon-degrading microorganisms: an overview; in Timmis KN (ed): Handbook of hydrocarbon and lipid microbiology. Berlin, Springer, 2010, pp 1997-2021.
67.
Wilkes H, Schwarzbauer J: Hydrocarbons: an introduction to structure, physico-chemical properties and natural occurrence; in Timmis KN (ed): Handbook of Hydrocarbon and Lipid Microbiology. Berlin, Springer, 2010, pp 5-48.
68.
Wilkes H, Boreham C, Harms G, Zengler K, Rabus R: Anaerobic degradation and carbon isotopic fractionation of alkylbenzenes in crude oil by sulphate-reducing bacteria. Organ Geochem 2000;31:101-115.
69.
Wöhlbrand L, Kube M, Mussmann M, Jarling R, Beck A, Amann R, Wilkes H, Reinhardt R, Rabus R: Complete genome, catabolic sub-proteomes and key-metabolites of Desulfobacula toluolica Tol2, a marine, aromatic compound-degrading, sulfate-reducing bacterium. Environ Microbiol 2013;15:1334-1355.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.