Anaerobic degradation is a key process in many environments either naturally or anthropogenically exposed to petroleum hydrocarbons. Considerable advances into the biochemistry and physiology of selected anaerobic degraders have been achieved over the last decades, especially for the degradation of aromatic hydrocarbons. However, researchers have only recently begun to explore the ecology of complex anaerobic hydrocarbon degrader communities directly in their natural habitats, as well as in complex laboratory systems using tools of molecular biology. These approaches have mainly been facilitated by the establishment of a suite of targeted marker gene assays, allowing for rapid and directed insights into the diversity as well as the identity of intrinsic degrader populations and degradation potentials established at hydrocarbon-impacted sites. These are based on genes encoding either peripheral or central key enzymes in aromatic compound breakdown, such as fumarate-adding benzylsuccinate synthases or dearomatizing aryl-coenzyme A reductases, or on aromatic ring-cleaving hydrolases. Here, we review recent advances in this field, explain the different detection methodologies applied, and discuss how the detection of site-specific catabolic gene markers has improved the understanding of processes at contaminated sites. Functional marker gene-based strategies may be vital for the development of a more elaborate population-based assessment and prediction of aromatic degradation potentials in hydrocarbon-impacted environments.

1.
Abu Laban N, Dao A, Foght J: DNA stable-isotope probing of oil sands tailings pond enrichment cultures reveals different key players for toluene degradation under methanogenic and sulfidogenic conditions. FEMS Microbiol Ecol 2015;91:fiv039.
[PubMed]
2.
Abu Laban N, Selesi D, Jobelius C, Meckenstock RU: Anaerobic benzene degradation by Gram-positive sulfate-reducing bacteria. FEMS Microbiol Ecol 2009;68:300-311.
[PubMed]
3.
Abu Laban N, Selesi D, Rattei T, Tischler P, Meckenstock RU: Identification of enzymes involved in anaerobic benzene degradation by a strictly anaerobic iron-reducing enrichment culture. Environ Microbiol 2010;12:2783-2796.
[PubMed]
4.
Acosta-González A, Rosselló-Móra R, Marqués S: Diversity of benzylsuccinate synthase-like (bssA) genes in hydrocarbon-polluted marine sediments suggests substrate-dependent clustering. Appl Environ Microbiol 2013;79:3667-3676.
[PubMed]
5.
An D, Caffrey SM, Soh J, Agrawal A, Brown D, Budwill K, Dong X, Dunfield PF, Foght J, Gieg LM, Hallam SJ, Hanson NW, He Z, Jack TR, Klassen J, Konwar KM, Kuatsjah E, Li C, Larter S, Leopatra V, Nesbø CL, Oldenburg T, Pagé AP, Ramos-Padron E, Rochman FF, Saidi-Mehrabad A, Sensen CW, Sipahimalani P, Song YC, Wilson S, Wolbring G, Wong M-L, Voordouw G: Metagenomics of hydrocarbon resource environments indicates aerobic taxa and genes to be unexpectedly common. Environ Sci Technol 2013;47:10708-10717.
[PubMed]
6.
Andrade L, Leite D, Ferreira E, Ferreira L, Paula G, Maguire M, Hubert C, Peixoto R, Domingues R, Rosado A: Microbial diversity and anaerobic hydrocarbon degradation potential in an oil-contaminated mangrove sediment. BMC Microbiol 2012;12:186.
[PubMed]
7.
Annweiler E, Materna A, Safinowski M, Kappler A, Richnow HH, Michaelis W, Meckenstock RU: Anaerobic degradation of 2-methylnaphthalene by a sulfate-reducing enrichment culture. Appl Environ Microbiol 2000;66:5329-5333.
[PubMed]
8.
Annweiler E, Michaelis W, Meckenstock RU: Identical ring cleavage products during anaerobic degradation of naphthalene, 2-methylnaphthalene, and tetralin indicate a new metabolic pathway. Appl Environ Microbiol 2002;68:852-858.
[PubMed]
9.
Beller HR, Kane SR, Legler TC, Alvarez PJ: A real-time polymerase chain reaction method for monitoring anaerobic, hydrocarbon-degrading bacteria based on a catabolic gene. Environ Sci Technol 2002;36:3977-3984.
[PubMed]
10.
Beller HR, Kane SR, Legler TC, McKelvie JR, Sherwood Lollar B, Pearson F, Balser L, Mackay DM: Comparative assessments of benzene, toluene, and xylene natural attenuation by quantitative polymerase chain reaction analysis of a catabolic gene, signature metabolites, and compound-specific isotope analysis. Environ Sci Technol 2008;42:6065-6072.
[PubMed]
11.
Beller HR, Spormann AM, Sharma PK, Cole JR, Reinhard M: Isolation and characterization of a novel toluene-degrading, sulfate-reducing bacterium. Appl Environ Microbiol 1996;62:1188-1196.
[PubMed]
12.
Bergmann F, Selesi D, Meckenstock R: Identification of new enzymes potentially involved in anaerobic naphthalene degradation by the sulfate-reducing enrichment culture N47. Arch Microbiol 2011a;193:241-250.
[PubMed]
13.
Bergmann F, Selesi D, Weinmaier T, Tischler P, Rattei T, Meckenstock RU: Genomic insights into the metabolic potential of the polycyclic aromatic hydrocarbon degrading sulfate-reducing Deltaproteobacterium N47. Environ Microbiol 2011b;13:1125-1137.
[PubMed]
14.
Biegert T, Fuchs G, Heider J: Evidence that anaerobic oxidation of toluene in the denitrifying bacterium Thauera aromatica is initiated by formation of benzylsuccinate from toluene and fumarate. Eur J Biochem 1996;238:661-668.
[PubMed]
15.
Boll M, Löffler C, Morris BEL, Kung JW: Anaerobic degradation of homocyclic aromatic compounds via arylcarboxyl-coenzyme A esters: organisms, strategies and key enzymes. Environ Microbiol 2014;16:612-627.
[PubMed]
16.
Bombach P, Richnow H, Kästner M, Fischer A: Current approaches for the assessment of in situ biodegradation. Appl Microbiol Biotechnol 2010;86:839-852.
[PubMed]
17.
Botton S, Parsons J: Degradation of BTX by dissimilatory iron-reducing cultures. Biodegradation 2007;18:371-381.
[PubMed]
18.
Botton S, van Harmelen M, Braster M, Parsons JR, Röling WFM: Dominance of Geobacteraceae in BTX-degrading enrichments from an iron-reducing aquifer. FEMS Microbiol Ecol 2007;62:118-130.
[PubMed]
19.
Bozinovski D, Herrmann S, Richnow H-H, von Bergen M, Seifert J, Vogt C: Functional analysis of an anaerobic m-xylene-degrading enrichment culture using protein-based stable isotope probing. FEMS Microbiol Ecol 2012;81:134-144.
[PubMed]
20.
Brow CN, O'Brien Johnson R, Johnson RL, Simon HM: Assessment of anaerobic toluene biodegradation activity by bssA transcript/gene ratios. Appl Environ Microbiol 2013;79:5338-5344.
[PubMed]
21.
Callaghan AV: Enzymes involved in the anaerobic oxidation of n-alkanes: from methane to long-chain paraffins. Front Microbiol 2013;4:89.
[PubMed]
22.
Callaghan AV, Davidova IA, Savage-Ashlock K, Parisi VA, Gieg LM, Suflita JM, Kukor JJ, Wawrik B: Diversity of benzyl- and alkylsuccinate synthase genes in hydrocarbon-impacted environments and enrichment cultures. Environ Sci Technol 2010;44:7287-7294.
[PubMed]
23.
Callaghan AV, Wawrik B, Ní Chadhain SM, Young LY, Zylstra GJ: Anaerobic alkane-degrading strain AK-01 contains two alkylsuccinate synthase genes. Biochem Biophys Res Commun 2008;366:142-148.
[PubMed]
24.
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R: QIIME allows analysis of high-throughput community sequencing data. Nat Meth 2010;7:335-336.
[PubMed]
25.
Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-Mohideen AS, McGarrell DM, Marsh T, Garrity GM, Tiedje JM: The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 2009;37:D141-D145.
[PubMed]
26.
Davidova IA, Gieg LM, Duncan KE, Suflita JM: Anaerobic phenanthrene mineralization by a carboxylating sulfate-reducing bacterial enrichment. ISME J 2007;1:436-442.
[PubMed]
27.
DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL: Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 2006;72:5069-5072.
[PubMed]
28.
DiDonato RJ, Young ND, Butler JE, Chin KJ, Hixson KK, Mouser P, Lipton MS, DeBoy R, Methe BA: Genome sequence of the deltaproteobacterial strain NaphS2 and analysis of differential gene expression during anaerobic growth on naphthalene. PLoS One 2010;5:e14072.
[PubMed]
29.
Eberlein C, Estelmann S, Seifert J, von Bergen M, Müller M, Meckenstock RU, Boll M: Identification and characterization of 2-naphthoyl-coenzyme A reductase, the prototype of a novel class of dearomatizing reductases. Mol Microbiol 2013a;88:1032-1039.
[PubMed]
30.
Eberlein C, Johannes J, Mouttaki H, Sadeghi M, Golding BT, Boll M, Meckenstock RU: ATP-dependent/-independent enzymatic ring reductions involved in the anaerobic catabolism of naphthalene. Environ Microbiol 2013b;15:1832-1841.
[PubMed]
31.
Estelmann S, Blank I, Feldmann A, Boll M: Two distinct old yellow enzymes are involved in naphthyl ring reduction during anaerobic naphthalene degradation. Mol Microbiol 2015;95:162-172.
[PubMed]
32.
Evans WC, Fuchs G: Anaerobic degradation of aromatic compounds. Annu Rev Microbiol 1988;42:289-317.
[PubMed]
33.
Fahrenfeld N, Cozzarelli I, Bailey Z, Pruden A: Insights into biodegradation through depth-resolved microbial community functional and structural profiling of a crude-oil contaminant plume. Microbial Ecol 2014;68:453-462.
[PubMed]
34.
Fowler SJ, Dong X, Sensen CW, Suflita JM, Gieg LM: Methanogenic toluene metabolism: community structure and intermediates. Environ Microbiol 2012;14:754-764.
[PubMed]
35.
Fowler SJ, Gutierrez-Zamora M-L, Manefield M, Gieg LM: Identification of toluene degraders in a methanogenic enrichment culture. FEMS Microbiol Ecol 2014;89:625-636.
[PubMed]
36.
Fuchs G, Boll M, Heider J: Microbial degradation of aromatic compounds - from one strategy to four. Nat Rev Microbiol 2011;9:803-816.
[PubMed]
37.
Grundmann O, Behrends A, Rabus R, Amann J, Halder T, Heider J, Widdel F: Genes encoding the candidate enzyme for anaerobic activation of n-alkanes in the denitrifying bacterium, strain HxN1. Environ Microbiol 2008;10:376-385.
[PubMed]
38.
Heider J: Adding handles to unhandy substrates: anaerobic hydrocarbon activation mechanisms. Curr Opin Chem Biol 2007;11:188-194.
[PubMed]
39.
Heider J, Schühle K: Anaerobic biodegradation of hydrocarbons including methane; in Rosenberg E, DeLong E, Lory S, Stackebrandt E, Thompson F (eds): The Prokaryotes. Berlin/Heidelberg, Springer, 2013, pp 605-634.
40.
Herrmann S, Kleinsteuber S, Chatzinotas A, Kuppardt S, Lueders T, Richnow H-H, Vogt C: Functional characterization of an anaerobic benzene-degrading enrichment culture by DNA stable isotope probing. Environ Microbiol 2010;12:401-411.
[PubMed]
41.
Herrmann S, Vogt C, Fischer A, Kuppardt A, Richnow H-H: Characterization of anaerobic xylene biodegradation by two-dimensional isotope fractionation analysis. Environ Microbiol Rep 2009;1:535-544.
[PubMed]
42.
Higashioka Y, Kojima H, Fukui M: Temperature-dependent differences in community structure of bacteria involved in degradation of petroleum hydrocarbons under sulfate-reducing conditions. J Appl Microbiol 2011;110:314-322.
[PubMed]
43.
Holmes DE, Risso C, Smith JA, Lovley DR: Anaerobic oxidation of benzene by the hyperthermophilic archaeon Ferroglobus placidus. Appl Environ Microbiol 2011;77:5926-5933.
[PubMed]
44.
Hosoda A, Kasai Y, Hamamura N, Takahata Y, Watanabe K: Development of a PCR method for the detection and quantification of benzoyl-CoA reductase genes and its application to monitored natural attenuation. Biodegradation 2005;16:591-601.
[PubMed]
45.
Hug LA, Edwards EA: Diversity of reductive dehalogenase genes from environmental samples and enrichment cultures identified with degenerate primer PCR screens. Front Microbiol 2013;4:341.
[PubMed]
46.
Jehmlich N, Kleinsteuber S, Vogt C, Benndorf D, Harms H, Schmidt F, Von Bergen M, Seifert J: Phylogenetic and proteomic analysis of an anaerobic toluene-degrading community. J Appl Microbiol 2010;109:1937-1945.
[PubMed]
47.
Jobelius C, Ruth B, Griebler C, Meckenstock RU, Hollender J, Reineke A, Frimmel FH, Zwiener C: Metabolites indicate hot spots of biodegradation and biogeochemical gradients in a high-resolution monitoring well. Environ Sci Technol 2010;45:474-481.
[PubMed]
48.
Johnson HA, Pelletier DA, Spormann AM: Isolation and characterization of anaerobic ethylbenzene dehydrogenase, a novel Mo-Fe-S enzyme. J Bacteriol 2001;183:4536-4542.
[PubMed]
49.
Kazy S, Monier A, Alvarez P: Assessing the correlation between anaerobic toluene degradation activity and bssA concentrations in hydrocarbon-contaminated aquifer material. Biodegradation 2010;21:793-800.
[PubMed]
50.
Kimes NE, Callaghan AV, Aktas DF, Smith WL, Sunner J, Golding BT, Drozdowska M, Hazen TC, Suflita JM, Morris PJ: Metagenomic analysis and metabolite profiling of deep-sea sediments from the Gulf of Mexico following the Deepwater Horizon oil spill. Front Microbiol 2013;4:50.
[PubMed]
51.
Kniemeyer O, Heider J: Ethylbenzene dehydrogenase, a novel hydrocarbon-oxidizing molybdenum/iron-sulfur/heme enzyme. J Biol Chem 2001;276:21381-21386.
[PubMed]
52.
Kniemeyer O, Musat F, Sievert SM, Knittel K, Wilkes H, Blumenberg M, Michaelis W, Classen A, Bolm C, Joye SB, Widdel F: Anaerobic oxidation of short-chain hydrocarbons by marine sulphate-reducing bacteria. Nature 2007;449:898-901.
[PubMed]
53.
Kropp KG, Davidova IA, Suflita JM: Anaerobic oxidation of n-dodecane by an addition reaction in a sulfate-reducing bacterial enrichment culture. Appl Environ Microbiol 2000;66:5393-5398.
[PubMed]
54.
Kümmel S, Kuntze K, Vogt C, Boll M, Heider J, Richnow HH: Evidence for benzylsuccinate synthase subtypes obtained by using stable isotope tools. J Bacteriol 2013;195:4660-4667.
[PubMed]
55.
Kunapuli U, Jahn MK, Lueders T, Geyer R, Heipieper HJ, Meckenstock RU: Desulfitobacterium aromaticivorans sp. nov. and Geobacter toluenoxydans sp. nov., iron-reducing bacteria capable of anaerobic degradation of monoaromatic hydrocarbons. Int J Syst Evol Microbiol 2010;60:686-695.
[PubMed]
56.
Kunapuli U, Lueders T, Meckenstock RU: The use of stable isotope probing to identify key iron-reducing microorganisms involved in anaerobic benzene degradation. ISME J 2007;1:643-653.
[PubMed]
57.
Kuntze K, Shinoda Y, Moutakki H, McInerney MJ, Vogt C, Richnow H-H, Boll M: 6-Oxocyclohex-1-ene-1-carbonyl-coenzyme A hydrolases from obligately anaerobic bacteria: characterization and identification of its gene as a functional marker for aromatic compounds degrading anaerobes. Environ Microbiol 2008;10:1547-1556.
[PubMed]
58.
Kuntze K, Vogt C, Richnow H-H, Boll M: Combined application of PCR-based functional assays for the detection of aromatic-compound-degrading anaerobes. Appl Environ Microbiol 2011;77:5056-5061.
[PubMed]
59.
Kuppardt A, Kleinsteuber S, Vogt C, Lueders T, Harms H, Chatzinotas A: Phylogenetic and functional diversity within toluene-degrading, sulphate-reducing consortia enriched from a contaminated aquifer. Microbial Ecol 2014;68:222-234.
[PubMed]
60.
Lara-Martin PA, Gomez-Parra A, Sanz JL, Gonzalez-Mazo E: Anaerobic degradation pathway of linear alkylbenzene sulfonates (LAS) in sulfate-reducing marine sediments. Environ Sci Technol 2010;44:1670-1676.
[PubMed]
61.
Lehtiö L, Goldman A: The pyruvate formate lyase family: sequences, structures and activation. Protein Eng Des Sel 2004;17:545-552.
[PubMed]
62.
Li YN, Porter AW, Mumford A, Zhao XH, Young LY: Bacterial community structure and bamA gene diversity in anaerobic degradation of toluene and benzoate under denitrifying conditions. J Appl Microbiol 2012;112:269-279.
[PubMed]
63.
Löffler C, Kuntze K, Vazquez JR, Rugor A, Kung JW, Böttcher A, Boll M: Occurrence, genes and expression of the W/Se-containing class II benzoyl-coenzyme A reductases in anaerobic bacteria. Environ Microbiol 2011;13:696-709.
[PubMed]
64.
Luo F, Gitiafroz R, Devine CE, Gong Y, Hug LA, Raskin L, Edwards EA: Metatranscriptome of an anaerobic benzene-degrading, nitrate-reducing enrichment culture reveals involvement of carboxylation in benzene ring activation. Appl Environ Microbiol 2014;80:4095-4107.
[PubMed]
65.
Meckenstock RU, Mouttaki H: Anaerobic degradation of non-substituted aromatic hydrocarbons. Curr Opin Biotechnol 2011;22:406-414.
[PubMed]
66.
Morris BEL, Gissibl A, Kümmel S, Richnow H-H, Boll M: A PCR-based assay for the detection of anaerobic naphthalene degradation. FEMS Microbiol Lett 2014;354:55-59.
[PubMed]
67.
Mouttaki H, Johannes J, Meckenstock RU: Identification of naphthalene carboxylase as a prototype for the anaerobic activation of non-substituted aromatic hydrocarbons. Environ Microbiol 2012;14:2770-2774.
[PubMed]
68.
Müller JA, Galushko AS, Kappler A, Schink B: Anaerobic degradation of m-cresol by Desulfobacterium cetonicum is initiated by formation of 3-hydroxybenzylsuccinate. Arch Microbiol 1999;172:287-294.
[PubMed]
69.
Musat F, Galushko A, Jacob J, Widdel F, Kube M, Reinhardt R, Wilkes H, Schink B, Rabus R: Anaerobic degradation of naphthalene and 2-methylnaphthalene by strains of marine sulfate-reducing bacteria. Environ Microbiol 2009;11:209-219.
[PubMed]
70.
Musat F, Wilkes H, Behrends A, Woebken D, Widdel F: Microbial nitrate-dependent cyclohexane degradation coupled with anaerobic ammonium oxidation. ISME J 2010;4:1290-1301.
[PubMed]
71.
Oka AR, Phelps CD, Zhu X, Saber DL, Young LY: Dual biomarkers of anaerobic hydrocarbon degradation in historically contaminated groundwater. Environ Sci Technol 2011;45:3407-3414.
[PubMed]
72.
Osman OA, Gudasz C, Bertilsson S: Diversity and abundance of aromatic catabolic genes in lake sediments in response to temperature change. FEMS Microbiol Ecol 2014;88:468-481.
[PubMed]
73.
Penton CR, Johnson TA, Quensen JF, Iwai S, Cole JR, Tiedje JM: Functional genes to assess nitrogen cycling and aromatic hydrocarbon degradation: primers and processing matter. Front Microbiol 2013;4:279.
[PubMed]
74.
Pérez-Pantoja D, Donoso R, Junca H, González B, Pieper DH: Phylogenomics of aerobic bacterial degradation of aromatics; in Timmis K (ed): Handbook of Hydrocarbon and Lipid Microbiology. Berlin/Heidelberg, Springer, 2010, pp 1355-1397.
75.
Pilloni G, von Netzer F, Engel M, Lueders T: Electron acceptor-dependent identification of key anaerobic toluene degraders at a tar-oil-contaminated aquifer by Pyro-SIP. FEMS Microbiol Ecol 2011;78:165-175.
[PubMed]
76.
Porter AW, Young LY: The bamA gene for anaerobic ring fission is widely distributed in the environment. Front Microbiol 2013;4:302.
[PubMed]
77.
Porter AW, Young LY: Benzoyl-CoA, a universal biomarker for anaerobic degradation of aromatic compounds; in Sima S, Geoffrey Michael G (eds): Advances in Applied Microbiology. Waltham, Academic Press, 2014, vol 88, pp 167-203.
[PubMed]
78.
Rabus R, Wilkes H, Behrends A, Armstroff A, Fischer T, Pierik AJ, Widdel F: Anaerobic initial reaction of n-alkanes in a denitrifying bacterium: evidence for (1-methylpentyl)succinate as initial product and for involvement of an organic radical in n-hexane metabolism. J Bacteriol 2001;183:1707-1715.
[PubMed]
79.
Rios-Hernandez LA, Gieg LM, Suflita JM: Biodegradation of an alicyclic hydrocarbon by a sulfate-reducing enrichment from a gas condensate-contaminated aquifer. Appl Environ Microbiol 2003;69:434-443.
[PubMed]
80.
Schink B: Anaerobic digestion: concepts, limits and perspectives. Water Sci Technol 2002;45:1-8.
[PubMed]
81.
Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF: Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 2009;75:7537-7541.
[PubMed]
82.
Schühle K, Fuchs G: Phenylphosphate carboxylase: a new C-C lyase involved in anaerobic phenol metabolism in Thauera aromatica. J Bacteriol 2004;186:4556-4567.
[PubMed]
83.
Song B, Ward BB: Genetic diversity of benzoyl coenzyme-A reductase genes detected in denitrifying isolates and estuarine sediment communities. Appl Environ Microbiol 2005;71:2036-2045.
[PubMed]
84.
Staats M, Braster M, Roling WFM: Molecular diversity and distribution of aromatic hydrocarbon-degrading anaerobes across a landfill leachate plume. Environ Microbiol 2011;13:1216-1227.
[PubMed]
85.
Stott K, Saito K, Thiele DJ, Massey V: Old Yellow Enzyme. The discovery of multiple isozymes and a family of related proteins. J Biol Chem 1993;268:6097-6106.
[PubMed]
86.
Strijkstra A, Trautwein K, Jarling R, Wöhlbrand L, Dörries M, Reinhardt R, Drozdowska M, Golding BT, Wilkes H, Rabus R: Anaerobic activation of p-cymene in denitrifying Betaproteobacteria: methyl group hydroxylation versus addition to fumarate. Appl Environ Microbiol 2014;80:7592-7603.
[PubMed]
87.
Sun W, Cupples AM: Diversity of five anaerobic toluene-degrading microbial communities investigated using stable isotope probing. Appl Environ Microbiol 2012;78:972-980.
[PubMed]
88.
Sun W, Sun X, Cupples A: Presence, diversity and enumeration of functional genes (bssA and bamA) relating to toluene degradation across a range of redox conditions and inoculum sources. Biodegradation 2014a;25:189-203.
[PubMed]
89.
Sun W, Sun X, Cupples AM: Identification of Desulfosporosinus as toluene-assimilating microorganisms from a methanogenic consortium. Int Biodeterior Biodegradation 2014b; 88:13-19.
90.
Tan B, Jane Fowler S, Laban NA, Dong X, Sensen CW, Foght J, Gieg LM: Comparative analysis of metagenomes from three methanogenic hydrocarbon-degrading enrichment cultures with 41 environmental samples. ISME J 2015:9:2028-2045.
[PubMed]
91.
Taubert M, Vogt C, Wubet T, Kleinsteuber S, Tarkka MT, Harms H, Buscot F, Richnow H-H, von Bergen M, Seifert J: Protein-SIP enables time-resolved analysis of the carbon flux in a sulfate-reducing, benzene-degrading microbial consortium. ISME J 2012;6:2291-2301.
[PubMed]
92.
Thiele B, Rieder O, Jehmlich N, von Bergen M, Müller M, Boll M: Aromatizing cyclohexa-1,5-diene-1-carbonyl-coenzyme A oxidase: characterization and its role in anaerobic aromatic metabolism. J Biol Chem 2008;283:20713-20721.
[PubMed]
93.
van der Zaan BM, Saia FT, Stams AJM, Plugge CM, de Vos WM, Smidt H, Langenhoff AAM, Gerritse J: Anaerobic benzene degradation under denitrifying conditions: Peptococcaceae as dominant benzene degraders and evidence for a syntrophic process. Environ Microbiol 2012;14:1171-1181.
[PubMed]
94.
von Netzer F, Pilloni G, Kleindienst S, Krüger M, Knittel K, Gründger F, Lueders T: Enhanced gene detection assays for fumarate-adding enzymes allow uncovering anaerobic hydrocarbon degraders in terrestrial and marine systems. Appl Environ Microbiol 2013;79:543-552.
[PubMed]
95.
Wallisch S, Gril T, Dong X, Welzl G, Bruns C, Heath E, Engel M, Suhadolc M, Schloter M: Influence of compost amendments on the diversity of alkane degrading bacteria in hydrocarbon contaminated soils. Front Microbiol 2014;5:96.
96.
Washer CE, Edwards EA: Identification and expression of benzylsuccinate synthase genes in a toluene-degrading methanogenic consortium. Appl Environ Microbiol 2007;73:1367-1369.
[PubMed]
97.
Weelink SAB, van Doesburg W, Saia FT, Rijpstra WIC, Röling WFM, Smidt H, Stams AJM: A strictly anaerobic betaproteobacterium Georgfuchsia toluolica gen. nov., sp. nov. degrades aromatic compounds with Fe(III), Mn(IV) or nitrate as an electron acceptor. FEMS Microbiol Ecol 2009;70:575-585.
[PubMed]
98.
Weelink SAB, van Eekert MHA, Stams AJM: Degradation of BTEX by anaerobic bacteria: physiology and application. Rev Environ Sci Biotechnol 2010;9:359-385.
99.
Widdel F, Knittel K, Galushko A: Anaerobic hydrocarbon-degrading microorganisms: an overview; in Timmis KN (ed): Handbook of Hydrocarbon and Lipid Microbiology. Berlin/Heidelberg, Springer, 2010, pp 1997-2021.
100.
Widdel F, Rabus R: Anaerobic biodegradation of saturated and aromatic hydrocarbons. Curr Opin Biotechnol 2001;12:259-276.
[PubMed]
101.
Wilkes H, Schwarzbauer J: Hydrocarbons: an introduction to structure, physico-chemical properties and natural occurrence; in Timmis K (ed): Handbook of Hydrocarbon and Lipid Microbiology. Berlin/Heidelberg, Springer, 2010, pp 1-48.
102.
Winderl C, Anneser B, Griebler C, Meckenstock RU, Lueders T: Depth-resolved quantification of anaerobic toluene degraders and aquifer microbial community patterns in distinct redox zones of a tar oil contaminant plume. Appl Environ Microbiol 2008;74:792-801.
[PubMed]
103.
Winderl C, Penning H, von Netzer F, Meckenstock RU, Lueders T: DNA-SIP identifies sulfate-reducing Clostridia as important toluene degraders in tar-oil-contaminated aquifer sediment. ISME J 2010;4:1314-1325.
[PubMed]
104.
Winderl C, Schaefer S, Lueders T: Detection of anaerobic toluene and hydrocarbon degraders in contaminated aquifers using benzylsuccinate synthase (bssA) genes as a functional marker. Environ Microbiol 2007;9:1035-1046.
[PubMed]
105.
Wöhlbrand L, Jacob JH, Kube M, Mussmann M, Jarling R, Beck A, Amann R, Wilkes H, Reinhardt R, Rabus R: Complete genome, catabolic sub-proteomes and key-metabolites of Desulfobacula toluolica Tol2, a marine, aromatic compound-degrading, sulfate-reducing bacterium. Environ Microbiol 2013;15:1334-1355.
[PubMed]
106.
Yagi JM, Suflita JM, Gieg LM, DeRito CM, Jeon C-O, Madsen EL: Subsurface cycling of nitrogen and anaerobic aromatic hydrocarbon biodegradation revealed by nucleic acid and metabolic biomarkers. Appl Environ Microbiol 2010;76:3124-3134.
[PubMed]
107.
Zhang T, Tremblay P-L, Chaurasia AK, Smith JA, Bain TS, Lovley DR: Anaerobic benzene oxidation via phenol in Geobacter metallireducens. Appl Environ Microbiol 2013;79:7800-7806.
[PubMed]
You do not currently have access to this content.