Acetone and other ketones are activated for subsequent degradation through carboxylation by many nitrate-reducing, phototrophic, and obligately aerobic bacteria. Acetone carboxylation leads to acetoacetate, which is subsequently activated to a thioester and degraded via thiolysis. Two different types of acetone carboxylases have been described, which require either 2 or 4 ATP equivalents as an energy supply for the carboxylation reaction. Both enzymes appear to combine acetone enolphosphate with carbonic phosphate to form acetoacetate. A similar but more complex enzyme is known to carboxylate the aromatic ketone acetophenone, a metabolic intermediate in anaerobic ethylbenzene metabolism in denitrifying bacteria, with simultaneous hydrolysis of 2 ATP to 2 ADP. Obligately anaerobic sulfate-reducing bacteria activate acetone to a four-carbon compound as well, but via a different process than bicarbonate- or CO2-dependent carboxylation. The present evidence indicates that either carbon monoxide or a formyl residue is used as a cosubstrate, and that the overall ATP expenditure of this pathway is substantially lower than in the known acetone carboxylase reactions.

1.
Abu Laban N, Selesi D, Rattei T, Tischler P, Meckenstock RU: Identification of enzymes involved in anaerobic benzene degradation by a strictly anaerobic iron-reducing enrichment culture. Environ Microbiol 2010;12:2783-2796.
[PubMed]
2.
Allen JR, Ensign SA: Carboxylation of epoxides to beta-keto acids in cell extracts of Xanthobacter strain Py2. J Bacteriol 1996;178:1469-1472.
[PubMed]
3.
Birks SJ, Kelly DJ: Assay and properties of acetone carboxylase, a novel enzyme involved in acetone-dependent growth and CO2 fixation in Rhodobacter capsulatus and other photosynthetic and denitrifying bacteria. Microbiology 1997;143:755-766.
4.
Bonnet-Smits E, Robertson L, Van Dijken J, Senior E, Kuenen J: Carbon dioxide fixation as the initial step in the metabolism of acetone by Thiosphaera pantotropha. J Gen Microbiol 1988;134:2281-2289.
5.
Boyd JM, Ellsworth H, Ensign SA: Bacterial acetone carboxylase is a manganese-dependent metalloenzyme. J Biol Chem 2004;279:46644-46651.
[PubMed]
6.
Boyd JM, Ensign SA: ATP-dependent enolization of acetone by acetone carboxylase from Rhodobacter capsulatus. Biochemistry 2005;44:8543-8553.
[PubMed]
7.
Brahmachary P, Wang G, Benoit SL, Weinberg MV, Maier RJ, Hoover TR: The human gastric pathogen Helicobacter pylori has a potential acetone carboxylase that enhances its ability to colonize mice. BMC Microbiol 2008;8:14.
[PubMed]
8.
Casteels M, Sniekers M, Fraccascia P, Mannaerts G, Van Veldhoven PP: The role of 2-hydroxyacyl-CoA lyase, a thiamin pyrophosphate-dependent enzyme, in the peroxisomal metabolism of 3-methyl-branched fatty acids and 2-hydroxy straight-chain fatty acids. Biochem Soc Trans 2007;35:876-880.
[PubMed]
9.
Clark DD, Ensign SA: Evidence for an inducible nucleotide-dependent acetone carboxylase in Rhodococcus rhodochrous B276. J Bacteriol 1999;181:2752-2758.
[PubMed]
10.
Dullius CH, Chen C-Y, Schink B: Nitrate-dependent degradation of acetone by Alicycliphilus and Paracoccus strains and comparison of acetone carboxylase enzymes. Appl Environ Microbiol 2011;77:6821-6825.
[PubMed]
11.
Ensign SA, Allen JR: Aliphatic epoxide carboxylation. Annu Rev Biochem 2003;72:55-76.
[PubMed]
12.
Ensign SA, Small FJ, Allen JR, Sluis MK: New roles for CO2 in the microbial metabolism of aliphatic epoxides and ketones. Arch Microbiol 1998;169:179-187.
[PubMed]
13.
Fuchs G, Boll M, Heider J: Microbial degradation of aromatic compounds - from one strategy to four. Nat Rev Microbiol 2011;9:803-816.
[PubMed]
14.
Gallert C, Knoll G, Winter J: Anaerobic carboxylation of phenol to benzoate: use of deuterated phenols revealed carboxylation exclusively in the C4-position. Appl Microbiol Biotechnol 1991;36:124-129.
15.
Gallert C, Winter J: Comparison of 4-hydroxynzoate decarboxylase and phenol carboxylase activities in cell-free extracts of a defined, 4-hydroxybenzoate and phenol-degrading anaerobic consortium. Appl Microbiol Biotechnol 1992;37:119-124.
16.
Gutiérrez Acosta OB, Hardt N, Hacker SM, Strittmatter T, Schink B, Marx A: Thiamine pyrophosphate stimulates acetone activation by Desulfococcus biacutus as monitored by a fluorogenic ATP analogue. ACS Chem Biol 2014b;9:1263-1266.
[PubMed]
17.
Gutiérrez Acosta OB, Hardt N, Schink B: Carbonylation as a key reaction in anaerobic acetone activation by Desulfococcus biacutus. Appl Environ Microbiol 2013;79:6228-6235.
[PubMed]
18.
Gutiérrez Acosta OB, Schleheck D, Schink B: Acetone utilization by sulfate-reducing bacteria: draft genome sequence of Desulfococcus biacutus and a proteomic survey of acetone-inducible proteins. BMC Genomics 2014a;15:584.
[PubMed]
19.
Haritash A, Kaushik C: Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater 2009;169:1-15.
[PubMed]
20.
Heider J: Adding handles to unhandy substrates: anaerobic hydrocarbon activation mechanisms. Curr Opin Chem Biol 2007;11:188-194.
[PubMed]
21.
Janssen PH, Schink B: Catabolic and anabolic enzyme activities and energetics of acetone metabolism of the sulfate-reducing bacterium Desulfococcus biacutus. J Bacteriol 1995a;177:277-282.
[PubMed]
22.
Janssen PH, Schink B: Metabolic pathways and energetics of the acetone-oxidizing, sulfate-reducing bacterium, Desulfobacterium cetonicum. Arch Microbiol 1995b;163:188-194.
[PubMed]
23.
Jobst B, Schühle K, Linne U, Heider J: ATP-dependent carboxylation of acetophenone by a novel type of carboxylase. J Bacteriol 2010;192:1387-1394.
[PubMed]
24.
Kai Y, Matsumura H, Izui K: Phosphoenolpyruvate carboxylase: three-dimensional structure and molecular mechanisms. Arch Biochem Biophys 2003;414:170-179.
[PubMed]
25.
Kniemeyer O, Heider J: Ethylbenzene dehydrogenase, a novel hydrocarbon-oxidizing molybdenum/iron-sulfur/heme enzyme. J Biol Chem 2001a;276:21381-21386.
[PubMed]
26.
Kniemeyer O, Heider J: (S)-1-Phenylethanol dehydrogenase of Azoarcus sp. strain EbN1, an enzyme of anaerobic ethylbenzene catabolism. Arch Microbiol 2001b;176:129-135.
[PubMed]
27.
Kotani T, Yurimoto H, Kato N, Sakai Y: Novel acetone metabolism in a propane-utilizing bacterium, Gordonia sp. strain TY-5. J Bacteriol 2007;189:886-893.
[PubMed]
28.
Kühner S, Wöhlbrand L, Fritz I, Wruck W, Hultschig C, Hufnagel P, Kube M, Reinhardt R, Rabus R: Substrate-dependent regulation of anaerobic degradation pathways for toluene and ethylbenzene in a denitrifying bacterium, strain EbN1. J Bacteriol 2005;187:1493-1503.
[PubMed]
29.
Lack A, Fuchs G: Carboxylation of phenylphosphate by phenol carboxylase, an enzyme system of anaerobic phenol metabolism. J Bacteriol 1992;174:3629-3636.
[PubMed]
30.
Lack A, Fuchs G: Evidence that phenol phosphorylation to phenylphosphate is the first step in anaerobic phenol metabolism in a denitrifying Pseudomonas sp. Arch Microbiol 1994;161:132-139.
[PubMed]
31.
Lukins H, Foster J: Methyl ketone metabolism in hydrocarbon-utilizing mycobacteria. J Bacteriol 1963;85:1074-1087.
[PubMed]
32.
McMahon RJ: Biotin in metabolism and molecular biology. Annu Rev Nutr 2002;22:221-239.
[PubMed]
33.
Meckenstock RU, Mouttaki H: Anaerobic degradation of non-substituted aromatic hydrocarbons. Curr Opin Biotechnol 2011;22:406-414.
[PubMed]
34.
Mouttaki H, Johannes J, Meckenstock RU: Identification of naphthalene carboxylase as a prototype for the anaerobic activation of non-substituted aromatic hydrocarbons. Environ Microbiol 2012;14:2770-2774.
[PubMed]
35.
Nocek B, Boyd J, Ensign SA, Peters JW: Crystallization and preliminary X-ray analysis of an acetone carboxylase from Xanthobacter autotrophicus strain Py2. Acta Crystallogr D Biol Crystallogr 2004;60:385-387.
[PubMed]
36.
Ogawa J, Kim JM, Nirdnoy W, Amano Y, Yamada H, Shimizu S: Purification and characterization of an ATP-dependent amidohydrolase, N-methylhydantoin amidohydrolase, from Pseudomonas putida 77. Eur J Biochem 1995;229:284-290.
[PubMed]
37.
Oosterkamp MJ, Boeren S, Atashgahi S, Plugge CM, Schaap PJ, Stams AJ: Proteomic analysis of nitrate-dependent acetone degradation by Alicycliphilus denitrificans strain BC. FEMS Microbiol Lett 2015:fnv080.
[PubMed]
38.
Platen H, Schink B: Methanogenic degradation of acetone by an enrichment culture. Arch Microbiol 1987;149:136-141.
[PubMed]
39.
Platen H, Schink B: Anaerobic degradation of acetone and higher ketones via carboxylation by newly isolated denitrifying bacteria. J Gen Microbiol 1989;135:883-891.
[PubMed]
40.
Platen H, Temmes A, Schink B: Anaerobic degradation of acetone by Desulfococcus biacutus spec. nov. Arch Microbiol 1990;154:355-361.
[PubMed]
41.
Rabus R, Kube M, Beck A, Widdel F, Reinhardt R: Genes involved in the anaerobic degradation of ethylbenzene in a denitrifying bacterium, strain EbN1. Arch Microbiol 2002;178:506-516.
[PubMed]
42.
Rabus R, Widdel F: Anaerobic degradation of ethylbenzene and other aromatic hydrocarbons by new denitrifying bacteria. Arch Microbiol 1995;163:96-103.
[PubMed]
43.
Rosier C, Leys N, Henoumont C, Mergeay M, Wattiez R: Purification and characterization of the acetone carboxylase of Cupriavidus metallidurans strain CH34. Appl Environ Microbiol 2012;78:4516-4518.
[PubMed]
44.
Schnell S, Schink B: Anaerobic aniline degradation via reductive deamination of 4-aminobenzoyl-CoA in Desulfobacterium anilini. Arch Microbiol 1991;155:183-190.
45.
Schühle K, Fuchs G: Phenylphosphate carboxylase: a new CC lyase involved in anaerobic phenol metabolism in Thauera aromatica. J Bacteriol 2004;186:4556-4567.
[PubMed]
46.
Schühle K, Heider J: Acetone and butanone metabolism of the denitrifying bacterium ‘Aromatoleum aromaticum' demonstrates novel biochemical properties of an ATP-dependent aliphatic ketone carboxylase. J Bacteriol 2012;194:131-141.
[PubMed]
47.
Sluis MK, Ensign SA: Purification and characterization of acetone carboxylase from Xanthobacter strain Py2. Proc Natl Acad Sci USA 1997;94:8456-8461.
[PubMed]
48.
Sluis MK, Larsen RA, Krum JG, Anderson R, Metcalf WW, Ensign SA: Biochemical, molecular, and genetic analyses of the acetone carboxylases from Xanthobacter autotrophicus strain Py2 and Rhodobacter capsulatus strain B10. J Bacteriol 2002;184:2969-2977.
[PubMed]
49.
Sluis MK, Small FJ, Allen JR, Ensign SA: Involvement of an ATP-dependent carboxylase in a CO2-dependent pathway of acetone metabolism by Xanthobacter strain Py2. J Bacteriol 1996;178:4020-4026.
[PubMed]
50.
Taylor BL, Zhulin IB: PAS domains: internal sensors of oxygen, redox potential, and light. Microbiol Mol Biol Rev 1999;63:479-506.
[PubMed]
51.
Taylor DG, Trudgill PW, Cripps RE, Harris PR: The microbial metabolism of acetone. J Gen Microbiol 1980;118:159-170.
52.
Thauer RK, Jungermann K, Decker K: Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 1977;41:100.
[PubMed]
53.
Tschech A, Fuchs G: Anaerobic degradation of phenol by pure cultures of newly isolated denitrifying pseudomonads. Arch Microbiol 1987;148:213-217.
[PubMed]
54.
Tschech A, Fuchs G: Anaerobic degradation of phenol via carboxylation to 4-hydroxybenzoate: in vitro study of isotope exchange between 14CO2 and 4-hydroxybenzoate. Arch Microbiol 1989;152:594-599.
55.
Wentzel A, Ellingsen TE, Kotlar H-K, Zotchev SB, Throne-Holst M: Bacterial metabolism of long-chain n-alkanes. Appl Microbiol Biotechnol 2007;76:1209-1221.
[PubMed]
56.
Widdel F, Knittel K, Galushko A: Anaerobic hydrocarbon-degrading microorganisms: an overview; in Timmis K (ed): Handbook of Hydrocarbon and Lipid Microbiology. Berlin/Heidelberg, Springer, 2010, pp 1997-2021.
57.
Wöhlbrand L, Kallerhoff B, Lange D, Hufnagel P, Thiermann J, Reinhardt R, Rabus R: Functional proteomic view of metabolic regulation in ‘Aromatoleum aromaticum' strain EbN1. Proteomics 2007;7:2222-2239.
[PubMed]
You do not currently have access to this content.