The glycyl radical enzyme-catalyzed addition of n-alkanes to fumarate creates a C-C-bond between two concomitantly formed stereogenic carbon centers. The configurations of the two diastereoisomers of the product resulting from n-hexane activation by the n-alkane-utilizing denitrifying bacterium strain HxN1, i.e. (1-methylpentyl)succinate, were assigned as (2S,1′R) and (2R,1′R). Experiments with stereospecifically deuterated n-(2,5-2H2)hexanes revealed that exclusively the pro-S hydrogen atom is abstracted from C2 of the n-alkane by the enzyme and later transferred back to C3 of the alkylsuccinate formed. These results indicate that the alkylsuccinate-forming reaction proceeds with an inversion of configuration at the carbon atom (C2) of the n-alkane forming the new C-C-bond, and thus stereochemically resembles a SN2-type reaction. Therefore, the reaction may occur in a concerted manner, which may avoid the highly energetic hex-2-yl radical as an intermediate. The reaction is associated with a significant primary kinetic isotope effect (kH/kD ≥3) for hydrogen, indicating that the homolytic C-H-bond cleavage is involved in the first irreversible step of the reaction mechanism. The (1-methylalkyl)succinate synthases of n-alkane-utilizing anaerobic bacteria apparently have very broad substrate ranges enabling them to activate not only aliphatic but also alkyl-aromatic hydrocarbons. Thus, two denitrifiers and one sulfate reducer were shown to convert the nongrowth substrate toluene to benzylsuccinate and further to the dead-end product benzoyl-CoA. For this purpose, however, the modified β-oxidation pathway known from alkylbenzene-utilizing bacteria was not employed, but rather the pathway used for n-alkane degradation involving CoA ligation, carbon skeleton rearrangement and decarboxylation. Furthermore, various n-alkane- and alkylbenzene-utilizing denitrifiers and sulfate reducers were found to be capable of forming benzyl alcohols from diverse alkylbenzenes, putatively via dehydrogenases. The thermophilic sulfate reducer strain TD3 forms n-alkylsuccinates during growth with n-alkanes or crude oil, which, based on the observed patterns of homologs, do not derive from a terminal activation of n-alkanes.

1.
Abu Laban N, Dao A, Semple K, Foght J: Biodegradation of C7 and C8 iso-alkanes under methanogenic conditions. Environ Microbiol DOI: 10.1111/1462-2920.12643.
[PubMed]
2.
Aeckersberg F, Bak F, Widdel F: Anaerobic oxidation of saturated hydrocarbons to CO2 by a new type of sulfate-reducing bacterium. Arch Microbiol 1991;156:5-14.
3.
Aeckersberg F, Rainey FA, Widdel F: Growth, natural relationships, cellular fatty acids and metabolic adaptation of sulfate-reducing bacteria that utilize long-chain alkanes under anoxic conditions. Arch Microbiol 1998;170:361-369.
[PubMed]
4.
Agrawal A, Gieg L: In situ detection of anaerobic alkane metabolites in subsurface environments. Front Microbiol 2013;4:140.
[PubMed]
5.
Aitken CM, Jones DM, Maguire MJ, Gray ND, Sherry A, Bowler BFJ, Ditchfield AK, Larter SR, Head IM: Evidence that crude oil alkane activation proceeds by different mechanisms under sulfate-reducing and methanogenic conditions. Geochim Cosmochim Acta 2013;109:162-174.
6.
Baena-Nogueras RM, Rojas-Ojeda P, Sanz JL, González-Mazo E, Lara-Martín PA: Reactivity and fate of secondary alkane sulfonates (SAS) in marine sediments. Environ Pollut 2014;189:35-42.
[PubMed]
7.
Beasley KK, Nanny MA: Potential energy surface for anaerobic oxidation of methane via fumarate addition. Environ Sci Technol 2012;46:8244-8252.
[PubMed]
8.
Beller HR, Spormann AM: Analysis of the novel benzylsuccinate synthase reaction for anaerobic toluene activation based on structural studies of the product. J Bacteriol 1998;180:5454-5457.
[PubMed]
9.
Bonin P, Cravo-Laureau C, Michotey V, Hirschler-Réa A: The anaerobic hydrocarbon biodegrading bacteria: an overview. Ophelia 2004;58:243-254.
10.
Bregnard T, Haner A, Hohener P, Zeyer J: Anaerobic degradation of pristane in nitrate-reducing microcosms and enrichment cultures. Appl Environ Microbiol 1997;63:2077-2081.
[PubMed]
11.
Callaghan AV: Enzymes involved in the anaerobic oxidation of n-alkanes: from methane to long-chain paraffins. Front Microbiol 2013;4:89.
[PubMed]
12.
Callaghan AV, Gieg LM, Kropp KG, Suflita JM, Young LY: Comparison of mechanisms of alkane metabolism under sulfate-reducing conditions among two bacterial isolates and a bacterial consortium. Appl Environ Microbiol 2006;72:4274-4282.
[PubMed]
13.
Callaghan AV, Tierney M, Phelps CD, Young LY: Anaerobic biodegradation of n-hexadecane by a nitrate-reducing consortium. Appl Environ Microbiol 2009;75:1339-1344.
[PubMed]
14.
Callaghan AV, Wawrik B, Ní Chadhain SM, Young LY, Zylstra GJ: Anaerobic alkane-degrading strain AK-01 contains two alkylsuccinate synthase genes. Biochem Biophys Res Commun 2008;366:142-148.
[PubMed]
15.
Cravo-Laureau C, Grossi V, Raphel D, Matheron R, Hirschler-Rea A: Anaerobic n-alkane metabolism by a sulfate-reducing bacterium, Desulfatibacillum aliphaticivorans strain cv2803T. Appl Environ Microbiol 2005;71:3458-3467.
[PubMed]
16.
Cravo-Laureau C, Matheron R, Cayol J-L, Joulian C, Hirschler-Rea A: Desulfatibacillum aliphaticivorans gen. Nov., sp. Nov., an n-alkane- and n-alkene-degrading, sulfate-reducing bacterium. Intern J Syst Evol Microbiol 2004;54:77-83.
[PubMed]
17.
Darley DJ, Butler DS, Prideaux SJ, Thornton TW, Wilson AD, Woodman TJ, Threadgill MD, Lloyd MD: Synthesis and use of isotope-labelled substrates for a mechanistic study on human α-methylacyl-CoA racemase 1A (AMACR; P504S). Org Biomol Chem 2009;7:543-552.
[PubMed]
18.
Davidova IA, Duncan KE, Choi OK, Suflita JM: Desulfoglaeba alkanexedens gen. Nov., sp. Nov., an n-alkane-degrading, sulfate-reducing bacterium. Int J Syst Evol Microbiol 2006;56:2737-2742.
[PubMed]
19.
Davidova IA, Gieg LM, Nanny M, Kropp KG, Suflita JM: Stable isotopic studies of n-alkane metabolism by a sulfate-reducing bacterial enrichment culture. Appl Environ Microbiol 2005;71:8174-8182.
[PubMed]
20.
Davidova IA, Suflita JM: Enrichment and isolation of anaerobic hydrocarbon-degrading bacteria; in Leadbetter JR (ed): Methods in Enzymology. Amsterdam, Elsevier, 2005, vol 397, pp 17-34.
[PubMed]
21.
Ehrenreich P, Behrends A, Harder J, Widdel F: Anaerobic oxidation of alkanes by newly isolated denitrifying bacteria. Arch Microbiol 2000;173:58-64.
[PubMed]
22.
Embree M, Nagarajan H, Movahedi N, Chitsaz H, Zengler K: Single-cell genome and metatranscriptome sequencing reveal metabolic interactions of an alkane-degrading methanogenic community. ISME J 2014;8:757-767.
[PubMed]
23.
Gieg LM, Davidova IA, Duncan KE, Suflita JM: Methanogenesis, sulfate reduction and crude oil biodegradation in hot Alaskan oilfields. Environ Microbiol 2010;12:3074-3086.
[PubMed]
24.
Grossi V, Cravo-Laureau C, Guyoneaud R, Ranchou-Peyruse A, Hirschler-Réa A: Metabolism of n-alkanes and n-alkenes by anaerobic bacteria: a summary. Org Geochem 2008;39:1197-1203.
25.
Grossi V, Raphel D, Hirschler-Rea A, Gilewicz M, Mouzdahir A, Bertrand J-C, Rontani J-F: Anaerobic biodegradation of pristane by a marine sedimentary bacterial and/or archaeal community. Org Geochem 2000;31:769-772.
26.
Grundmann O, Behrends A, Rabus R, Amann J, Halder T, Heider J, Widdel F: Genes encoding the candidate enzyme for anaerobic activation of n-alkanes in the denitrifying bacterium, strain HxN1. Environ Microbiol 2008;10:376-385.
[PubMed]
27.
Heider J: Adding handles to unhandy substrates: anaerobic hydrocarbon activation mechanisms. Curr Opin Chem Biol 2007;11:188-194.
[PubMed]
28.
Higashioka Y, Kojima H, Nakagawa T, Sato S, Fukui M: A novel n-alkane-degrading bacterium as a minor member of p-xylene-degrading sulfate-reducing consortium. Biodegradation 2009;20:383-390.
[PubMed]
29.
Jaekel U, Musat N, Adam B, Kuypers M, Grundmann O, Musat F: Anaerobic degradation of propane and butane by sulfate-reducing bacteria enriched from marine hydrocarbon cold seeps. ISME J 2013;7:885-895.
[PubMed]
30.
Jaekel U, Vogt C, Fischer A, Richnow H-H, Musat F: Carbon and hydrogen stable isotope fractionation associated with the anaerobic degradation of propane and butane by marine sulfate-reducing bacteria. Environ Microbiol 2014;16:130-140.
[PubMed]
31.
Jaekel U, Zedelius J, Wilkes H, Musat F: Anaerobic degradation of cyclohexane by sulfate-reducing bacteria from hydrocarbon-contaminated marine sediments. Front Microbiol 2015;6:116.
[PubMed]
32.
Jarling R, Kühner S, Basílio Janke E, Gruner A, Drozdowska M, Golding BT, Rabus R, Wilkes H: Versatile transformations of hydrocarbons in anaerobic bacteria: substrate ranges and regio- and stereochemistry of activation reactions. Front Microbiol 2015;6:880.
[PubMed]
33.
Jarling R, Sadeghi M, Drozdowska M, Lahme S, Buckel W, Rabus R, Widdel F, Golding BT, Wilkes H: Stereochemical investigations reveal the mechanism of the bacterial activation of n-alkanes without oxygen. Angew Chem Int Ed 2012;51:1334-1338.
[PubMed]
34.
Jobst B, Schühle K, Linne U, Heider J: ATP-dependent carboxylation of acetophenone by a novel type of carboxylase. J Bacteriol 2010;192:1387-1394.
[PubMed]
35.
Jones DM, Head IM, Gray ND, Adams JJ, Rowan AK, Aitken CM, Bennett B, Huang H, Brown A, Bowler BFJ, Oldenburg T, Erdmann M, Larter SR: Crude-oil biodegradation via methanogenesis in subsurface petroleum reservoirs. Nature 2008;451:176-180.
[PubMed]
36.
Khelifi N, Amin Ali O, Roche P, Grossi V, Brochier-Armanet C, Valette O, Ollivier B, Dolla A, Hirschler-Rea A: Anaerobic oxidation of long-chain n-alkanes by the hyperthermophilic sulfate-reducing archaeon, Archaeoglobus fulgidus. ISME J 2014;8:2153-2166.
[PubMed]
37.
Kniemeyer O, Fischer T, Wilkes H, Glockner FO, Widdel F: Anaerobic degradation of ethylbenzene by a new type of marine sulfate-reducing bacterium. Appl Environ Microbiol 2003;69:760-768.
[PubMed]
38.
Kniemeyer O, Heider J: Ethylbenzene dehydrogenase, a novel hydrocarbon-oxidizing molybdenum/iron-sulfur/heme enzyme. J Biol Chem 2001;276:21381-21386.
[PubMed]
39.
Kniemeyer O, Musat F, Sievert SM, Knittel K, Wilkes H, Blumenberg M, Michaelis W, Classen A, Bolm C, Joye SB, Widdel F: Anaerobic oxidation of short-chain hydrocarbons by marine sulphate-reducing bacteria. Nature 2007;449:898-901.
[PubMed]
40.
Lara-Martín PA, Gómez-Parra A, Sanz JL, González-Mazo E: Anaerobic degradation pathway of linear alkylbenzene sulfonates (LAS) in sulfate-reducing marine sediments. Environ Sci Technol 2010;44:1670-1676.
[PubMed]
41.
Leutwein C, Heider J: Anaerobic toluene-catabolic pathway in denitrifying Thauera aromatica: activation and β-oxidation of the first intermediate, (R)-(+)-benzylsuccinate. Microbiology 1999;145:3265-3271.
[PubMed]
42.
Musat F, Wilkes H, Behrends A, Woebken D, Widdel F: Microbial nitrate-dependent cyclohexane degradation coupled with anaerobic ammonium oxidation. ISME J 2010;4:1290-1301.
[PubMed]
43.
Platen H, Schink B: Anaerobic degradation of acetone and higher ketones via carboxylation by newly isolated denitrifying bacteria. J Gen Microbiol 1989;135:883-891.
[PubMed]
44.
Rabus R, Jarling R, Lahme S, Kühner S, Heider J, Widdel F, Wilkes H: Co-metabolic conversion of toluene in anaerobic n-alkane-degrading bacteria. Environ Microbiol 2011;13:2576-2586.
[PubMed]
45.
Rabus R, Wilkes H, Behrends A, Armstroff A, Fischer T, Pierik AJ, Widdel F: Anaerobic initial reaction of n-alkanes in a denitrifying bacterium: evidence for (1-methylpentyl)succinate as initial product and for involvement of an organic radical in n-hexane metabolism. J Bacteriol 2001;183:1707-1715.
[PubMed]
46.
Rahn OE: Ein Paraffin zersetzender Schimmelpilz. Zentralbl Bakteriol Parasitenk Infekt II Abt 1906;16:382-384.
47.
Rios-Hernandez LA, Gieg LM, Suflita JM: Biodegradation of an alicyclic hydrocarbon by a sulfate-reducing enrichment from a gas condensate-contaminated aquifer. Appl Environ Microbiol 2003;69:434-443.
[PubMed]
48.
Rueter P, Rabus R, Wilkes H, Aeckersberg F, Rainey FA, Jannasch HW, Widdel F: Anaerobic oxidation of hydrocarbons in crude oil by new types of sulphate-reducing bacteria. Nature 1994;372:455-458.
[PubMed]
49.
Schühle K, Heider J: Acetone and butanone metabolism of the denitrifying bacterium ‘Aromatoleum aromaticum' demonstrates novel biochemical properties of an ATP-dependent aliphatic ketone carboxylase. J Bacteriol 2012;194:131-141.
[PubMed]
50.
Sluis MK, Larsen RA, Krum JG, Anderson R, Metcalf WW, Ensign SA: Biochemical, molecular, and genetic analyses of the acetone carboxylases from Xanthobacter autotrophicus strain Py2 and Rhodobacter capsulatus strain B10. J Bacteriol 2002;184:2969-2977.
[PubMed]
51.
Smith DM, Nicolaides A, Golding BT, Radom L: Ring opening of the cyclopropylcarbinyl radical and its n- and o-substituted analogues. A theoretical examination of very fast unimolecular reactions. J Am Chem Soc 1998;120:10223-10233.
52.
So CM, Phelps CD, Young LY: Anaerobic transformation of alkanes to fatty acids by a sulfate-reducing bacterium, strain Hxd3. Appl Environ Microbiol 2003;69:3892-3900.
[PubMed]
53.
So CM, Young LY: Isolation and characterization of a sulfate-reducing bacterium that anaerobically degrades alkanes. Appl Environ Microbiol 1999;65:2969-2976.
[PubMed]
54.
Söhngen NL: Oxidation of petroleum, paraffin, paraffin-oil and benzene by microbes. Proc Kon Akad Wetensch Amst 1913;15:1145.
55.
Strijkstra A, Trautwein K, Jarling R, Wöhlbrand L, Dörries M, Reinhardt R, Drozdowska M, Golding BT, Wilkes H, Rabus R: Anaerobic activation of p-cymene in denitrifying betaproteobacteria: methyl group hydroxylation versus addition to fumarate. Appl Environ Microbiol 2014;80:7592-7603.
[PubMed]
56.
Tan B, Dong X, Sensen CW, Foght J: Metagenomic analysis of an anaerobic alkane-degrading microbial culture: Potential hydrocarbon-activating pathways and inferred roles of community members. Genome 2013;56:599-611.
[PubMed]
57.
Tan B, Fowler SJ, Abu Laban N, Dong X, Sensen CW, Foght J, Gieg LM: Comparative analysis of metagenomes from three methanogenic hydrocarbon-degrading enrichment cultures with 41 environmental samples. ISME J 2015a;9:2028-2045.
[PubMed]
58.
Tan B, Nesbø C, Foght J: Re-analysis of omics data indicates Smithella may degrade alkanes by addition to fumarate under methanogenic conditions. ISME J 2014;8:2353-2356.
[PubMed]
59.
Tan B, Semple K, Foght J: Anaerobic alkane biodegradation by cultures enriched from oil sands tailings ponds involves multiple species capable of fumarate addition. FEMS Microbiol Ecol 2015b;91:fiv042.
[PubMed]
60.
Thauer RK, Shima S: Methane as fuel for anaerobic microorganisms. Ann NY Acad Sci 2008;1125:158-170.
[PubMed]
61.
Widdel F, Knittel K, Galushko A: Anaerobic hydrocarbon-degrading microorganisms: an overview; in Timmis KN (ed): Handbook of Hydrocarbon and Lipid Microbiology. Berlin, Springer, 2010, pp 1997-2021.
62.
Wilkes H, Kühner S, Bolm C, Fischer T, Classen A, Widdel F, Rabus R: Formation of n-alkane- and cycloalkane-derived organic acids during anaerobic growth of a denitrifying bacterium with crude oil. Org Geochem 2003;34:1313-1323.
63.
Wilkes H, Rabus R, Fischer T, Armstroff A, Behrends A, Widdel F: Anaerobic degradation of n-hexane in a denitrifying bacterium: further degradation of the initial intermediate (1-methylpentyl)succinate via C-skeleton rearrangement. Arch Microbiol 2002;177:235-243.
[PubMed]
64.
Zedelius J, Rabus R, Grundmann O, Werner I, Brodkorb D, Schreiber F, Ehrenreich P, Behrends A, Wilkes H, Kube M, Reinhardt R, Widdel F: Alkane degradation under anoxic conditions by a nitrate-reducing bacterium with possible involvement of the electron acceptor in substrate activation. Environ Microbiol Rep 2011;3:125-135.
[PubMed]
65.
Zengler K, Richnow HH, Rossello-Mora R, Michaelis W, Widdel F: Methane formation from long-chain alkanes by anaerobic microorganisms. Nature 1999;401:266-269.
[PubMed]
You do not currently have access to this content.