In biology, tungsten (W) is exclusively found in microbial enzymes bound to a bis-pyranopterin cofactor (bis-WPT). Previously known W enzymes catalyze redox oxo/hydroxyl transfer reactions by directly coordinating their substrates or products to the metal. They comprise the W-containing formate/formylmethanofuran dehydrogenases belonging to the dimethyl sulfoxide reductase (DMSOR) family and the aldehyde:ferredoxin oxidoreductase (AOR) families, which form a separate enzyme family within the Mo/W enzymes. In the last decade, initial insights into the structure and function of two unprecedented W enzymes were obtained: the acetaldehyde forming acetylene hydratase (ACH) belongs to the DMSOR and the class II benzoyl-coenzyme A (CoA) reductase (BCR) to the AOR family. The latter catalyzes the reductive dearomatization of benzoyl-CoA to a cyclic diene. Both are key enzymes in the degradation of acetylene (ACH) or aromatic compounds (BCR) in strictly anaerobic bacteria. They are unusual in either catalyzing a nonredox reaction (ACH) or a redox reaction without coordinating the substrate or product to the metal (BCR). In organic chemical synthesis, analogous reactions require totally nonphysiological conditions depending on Hg2+ (acetylene hydration) or alkali metals (benzene ring reduction). The structural insights obtained pave the way for biological or biomimetic approaches to basic reactions in organic chemistry.

1.
Abbasian F, Lockington R, Mallavarapu M, Naidu R: A comprehensive review of aliphatic hydrocarbon biodegradation by bacteria. Applied Biochem Biotechnol 2015;176:670-699.
[PubMed]
2.
Abt DJ: Tungsten-Acetylene Hydratase from Pelobacter acetylenicus and Molybdenum-Transhydroxylase from Pelobacter acidigallici. Two Novel Molybdopterin and Iron-Sulfur Containing Enzymes; thesis, University of Konstanz, 2001.
3.
Andreesen JR, Makdessi K: Tungsten, the surprisingly positively acting heavy metal element for prokaryotes. Ann NY Acad Sci 2008;1125:215-229.
[PubMed]
4.
Bas DC, Rogers DM, Jensen JH: Very fast prediction and rationalization of pKa values for protein-ligand complexes. Proteins 2008;73:765-783.
[PubMed]
5.
Bashford D, Karplus M: pKa's of ionizable groups in proteins: atomic detail from a continuum electrostatic model. Biochemistry 1990;29:10219-10225.
[PubMed]
6.
Bergmann F, Selesi D, Weinmaier T, Tischler P, Rattei T, Meckenstock RU: Genomic insights into the metabolic potential of the polycyclic aromatic hydrocarbon degrading sulfate-reducing Deltaproteobacterium N47. Environ Microbiol 2011;13:1125-1137.
[PubMed]
7.
Beroza P, Fredkin DR, Okamura MY, Feher G: Protonation of interacting residues in a protein by a Monte Carlo method: application to lysozyme and the photosynthetic reaction center of Rhodobacter sphaeroides. Proc Natl Acad Sci USA 1991;88:5804-5808.
[PubMed]
8.
Bevers LE, Hagedoorn PL, Hagen WR: The bioinorganic chemistry of tungsten. Coord Chem Rev 2009;253:269-290.
9.
Birch AJ: Reduction by dissolving metals. Part I. J Chem Soc 1944, pp 430-436.
10.
Birch-Hirschfeld L: Die Umsetzung von Acetylen durch Mycobacterium lacticola. Zentralbl Bakteriol Parasitenk 1932;86:113-129.
11.
Boll M: Dearomatizing benzene ring reductases. J Mol Microbiol Biotechnol 2005;10:132-142.
[PubMed]
12.
Boll M, Albracht SS, Fuchs G: Benzoyl-CoA reductase (dearomatizing), a key enzyme of anaerobic aromatic metabolism. A study of adenosinetriphosphatase activity, ATP stoichiometry of the reaction and EPR properties of the enzyme. Eur J Biochem 1997;244:840-851.
[PubMed]
13.
Boll M, Fuchs G: Benzoyl-coenzyme A reductase (dearomatizing), a key enzyme of anaerobic aromatic metabolism. ATP dependence of the reaction, purification and some properties of the enzyme from Thauera aromatica strain K172. Eur J Biochem 1995;234:921-933.
[PubMed]
14.
Boll M, Fuchs G, Meier C, Trautwein A, El Kasmi A, Ragsdale SW, Buchanan G, Lowe DJ: Redox centers of 4-hydroxybenzoyl-CoA reductase, a member of the xanthine oxidase family of molybdenum-containing enzymes. J Biol Chem 2001;276:47853-47862.
[PubMed]
15.
Boll M, Löffler C, Morris BE, Kung JW: Anaerobic degradation of homocyclic aromatic compounds via arylcarboxyl-coenzyme A esters: organisms, strategies and key enzymes. Environ Microbiol 2014;16:612-627.
[PubMed]
16.
Boll M, Schink B, Messerschmidt A, Kroneck PMH: Novel bacterial molybdenum and tungsten enzymes: three-dimensional structure, spectroscopy, and reaction mechanism. Biol Chem 2005;386:999-1006.
[PubMed]
17.
Bombarda E, Ullmann GM: pH-dependent pKa values in proteins - a theoretical analysis of protonation energies with practical consequences for enzymatic reactions. J Phys Chem 2010;114:1994-2003.
[PubMed]
18.
Buckel W, Kung JW, Boll M: The benzoyl-coenzyme A reductase and 2-hydroxyacyl-coenzyme A dehydratase radical enzyme family. ChemBioChem 2014;15:2188-2194.
[PubMed]
19.
Buckel W, Thauer RK: Energy conservation via electron bifurcating ferredoxin reduction and proton/Na(+) translocating ferredoxin oxidation. Biochim Biophys Acta 2013;1827:94-113.
[PubMed]
20.
Carmona M, Zamarro MT, Blazquez B, Durante-Rodriguez G, Juarez JF, Valderrama JA, Barragan MJ, Garcia JL, Diaz E: Anaerobic catabolism of aromatic compounds: a genetic and genomic view. Microbiol Mol Biol Rev 2009;73:71-133.
[PubMed]
21.
Chan MK, Mukund S, Kletzin A, Adams MW, Rees DC: Structure of a hyperthermophilic tungstopterin enzyme, aldehyde ferredoxin oxidoreductase. Science 1995;267:1463-1469.
[PubMed]
22.
Costa KC, Wong PM, Wang T, Lie TJ, Dodsworth JA, Swanson I, Burn JA, Hackett M, Leigh JA: Protein complexing in a methanogen suggests electron bifurcation and electron delivery from formate to heterodisulfide reductase. Proc Natl Acad Sci USA 2010;107:11050-11055.
[PubMed]
23.
Culbertson CW, Strohmaier FE, Oremland RS: Acetylene as a substrate in the development of primordial bacterial communities. Orig Life Evol Biosph 1988;18:397-340.
[PubMed]
24.
de Bont JAM, Peck MW: Metabolism of acetylene by Rhodococcus A1. Arch Microbiol 1980;127:99-104.
25.
DiDonato RJ Jr, Young ND, Butler JE, Chin KJ, Hixson KK, Mouser P, Lipton MS, DeBoy R, Methe BA: Genome sequence of the deltaproteobacterial strain NaphS2 and analysis of differential gene expression during anaerobic growth on naphthalene. PLoS One 2010;5:e14072.
[PubMed]
26.
Dobbek H, Huber R: The molybdenum and tungsten cofactors: a crystallographic view. Metal Ions Biol Syst 2002;39:227-263.
[PubMed]
27.
Eberlein C, Estelmann S, Seifert J, von Bergen M, Müller M, Meckenstock RU, Boll M: Identification and characterization of 2-naphthoyl-coenzyme A reductase, the prototype of a novel class of dearomatizing reductases. Mol Microbiol 2013a;88:1032-1039.
[PubMed]
28.
Eberlein C, Johannes J, Mouttaki H, Sadeghi M, Golding BT, Boll M, Meckenstock RU: ATP-dependent/-independent enzymatic ring reductions involved in the anaerobic catabolism of naphthalene. Environ Microbiol 2013b;15:1832-1841.
[PubMed]
29.
Einsle O, Niessen H, Abt DJ, Seiffert GB, Schink B, Huber R, Messerschmidt A, Kroneck PMH: Crystallization and preliminary X-ray analysis of the tungsten-dependent acetylene hydratase from Pelobacter acetylenicus. Acta Crystallogr Sect F Struct Biol Cryst Commun 2005;61:299-301.
[PubMed]
30.
Estelmann S, Blank I, Feldmann A, Boll M: Two distinct old yellow enzymes are involved in naphthyl ring reduction during anaerobic naphthalene degradation. Mol Microbiol 2015;95:162-172.
[PubMed]
31.
Fuchs G, Boll M, Heider J: Microbial degradation of aromatic compounds - from one strategy to four. Nat Rev Microbiol 2011;9:803-816.
[PubMed]
32.
Hartmann T, Schwanhold N, Leimkühler S: Assembly and catalysis of molybdenum or tungsten-containing formate dehydrogenases from bacteria. Biochim Biophys Acta 2014;1854:1090-1100.
[PubMed]
33.
Heintz D, Gallien S, Wischgoll S, Ullmann AK, Schaeffer C, Kretzschmar AK, van Dorsselaer A, Boll M: Differential membrane proteome analysis reveals novel proteins involved in the degradation of aromatic compounds in Geobacter metallireducens. Mol Cell Proteomics 2009;8:2159-2169.
[PubMed]
34.
Hille R: The molybdenum oxotransferases and related enzymes. Dalton Trans 2013;42:3029-3042.
[PubMed]
35.
Hille R, Hall J, Basu P: The mononuclear molybdenum enzymes. Chem Rev 2014;114:3963-4038.
[PubMed]
36.
Holmes DE, Risso C, Smith JA, Lovley DR: Genome-scale analysis of anaerobic benzoate and phenol metabolism in the hyperthermophilic archaeon Ferroglobus placidus. ISME J 2012;6:146-157.
[PubMed]
37.
Hu Y, Faham S, Roy R, Adams MW, Rees DC: Formaldehyde ferredoxin oxidoreductase from Pyrococcus furiosus: the 1.85 Å resolution crystal structure and its mechanistic implications. J Mol Biol 1999;286:899-914.
[PubMed]
38.
Hyman MR, Arp DJ: Acetylene inhibition of metalloenzymes. Anal Biochem 1988;173:207-220.
[PubMed]
39.
Kanner D, Bartha R: Growth of Nocardia rhodochrous on acetylene gas. J Bacteriol 1979;139:225-230.
[PubMed]
40.
Kaster AK, Moll J, Parey K, Thauer RK: Coupling of ferredoxin and heterodisulfide reduction via electron bifurcation in hydrogenotrophic methanogenic archaea. Proc Natl Acad Sci USA 2011;108:2981-2986.
[PubMed]
41.
Kletzin A, Adams MW: Tungsten in biological systems. FEMS Microbiol Rev 1996;18:5-63.
[PubMed]
42.
Klingen AR, Bombarda E, Ullmann GM: Theoretical investigation of the behavior of titratable groups in proteins. Photochem Photobiol Sci 2006;5:588-596.
[PubMed]
43.
Kung JW, Meier AK, Mergelsberg M, Boll M: Enzymes involved in a novel anaerobic cyclohexane carboxylic acid degradation pathway. J Bacteriol 2014;196:3667-3674.
[PubMed]
44.
Kung JW, Baumann S, von Bergen M, Müller M, Hagedoorn PL, Hagen WR, Boll M: Reversible biological Birch reduction at an extremely low redox potential. J Am Chem Soc 2010;132:9850-9856.
[PubMed]
45.
Kung JW, Löffler C, Dorner K, Heintz D, Gallien S, Van Dorsselaer A, Friedrich T, Boll M: Identification and characterization of the tungsten-containing class of benzoyl-coenzyme A reductases. Proc Natl Acad Sci USA 2009;106:17687-17692.
[PubMed]
46.
Liao R-Z, Thiel W: Comparison of QM-only and QM/MM models for the mechanism of tungsten-dependent acetylene hydratase. J Chem Theory Comput 2012;8:3793-3803.
[PubMed]
47.
Liao R-Z, Thiel W: Convergence in the QM-only and QM/MM modeling of enzymatic reactions: a case study for acetylene hydratase. J Comput Chem 2013;34:2389-2397.
[PubMed]
48.
Liao R-Z, Yu J-G, Himo F: Mechanism of tungsten-dependent acetylene hydratase from quantum chemical calculations. Proc Natl Acad Sci USA 2010;52:22523-22527.
[PubMed]
49.
Löffler C, Kuntze K, Vazquez JR, Rugor A, Kung JW, Böttcher A, Boll M: Occurrence, genes and expression of the W/Se-containing class II benzoyl-coenzyme A reductases in anaerobic bacteria. Environ Microbiol 2011;13:696-709.
[PubMed]
50.
L'vov NP, Nosikov AN, Antipov AN: Tungsten-containing enzymes. Biochemistry (Mosc) 2002;67:196-200.
[PubMed]
51.
Meckenstock RU, Krieger R, Ensign S, Kroneck PMH, Schink B: Acetylene hydratase of Pelobacter acetylenicus. Molecular and spectroscopic properties of the tungsten iron-sulfur enzyme. Eur J Biochem 1999;264:176-182.
[PubMed]
52.
Miller LG, Baesman SM, Kirshtein J, Voytek MA, Oremland RS: A biogeochemical and genetic survey of acetylene fermentation by environmental samples and bacterial isolates. Geomicrobiol J 2013;30:501-516.
53.
Mobitz H, Boll M: A Birch-like mechanism in enzymatic benzoyl-CoA reduction: a kinetic study of substrate analogues combined with an ab initio model. Biochemistry 2002;41:1752-1758.
[PubMed]
54.
Onufriev A, Case DA, Ullmann GM: A novel view of pH titration in biomolecules. Biochemistry 2001;40:3413-3419.
[PubMed]
55.
Oremland RS, Voytek MA: Acetylene as fast food: implications for development of life on anoxic primordial Earth and in the outer solar system. Astrobiology 2008;8:45-58.
[PubMed]
56.
Pandelia ME, Ogata H, Lubitz W: Intermediates in the catalytic cycle of [NiFe] hydrogenase: functional spectroscopy of the active site. ChemPhysChem 2010;11:1127-1140.
[PubMed]
57.
Pushie MJ, Cotelesage JJ, George GN: Molybdenum and tungsten oxygen transferases - and functional diversity within a common active site motif. Metallomics 2014;6:15-24.
[PubMed]
58.
Romao MJ: Molybdenum and tungsten enzymes: a crystallographic and mechanistic overview. Dalton Trans 2009;7:4053-4068.
[PubMed]
59.
Rosner BM, Rainey FA, Kroppenstedt RM, Schink B: Acetylene degradation by new isolates of aerobic bacteria and comparison of acetylene hydratase enzymes. FEMS Microbiol Lett 1997;148:175-180.
[PubMed]
60.
Rosner BM, Schink B: Purification and characterization of acetylene hydratase of Pelobacter acetylenicus, a tungsten iron-sulfur protein. J Bacteriol 1995;177:5767-5772.
[PubMed]
61.
Rothery RA, Weiner JH: Shifting the metallocentric molybdoenzyme paradigm: the importance of pyranopterin coordination. J Biol Inorg Chem 2015;20:349-372.
[PubMed]
62.
Roy R, Adams MW: Tungsten-dependent aldehyde oxidoreductase: a new family of enzymes containing the pterin cofactor. Met Ions Biol Syst 2002;39:673-697.
[PubMed]
63.
Schink B: Fermentation of acetylene by an obligate anaerobe, Pelobacter acetylenicus sp. nov. Arch Microbiol 1985;142:295-301.
64.
Schink B: The genus Pelobacter; in Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds): The Prokaryotes. New York, Springer, 2006, vol 3, pp 5-11.
65.
Schmid G, Rene SB, Boll M: Enzymes of the benzoyl-coenzyme A degradation pathway in the hyperthermophilic archaeon Ferroglobus placidus. Environ Microbiol 2015:17:3289-3000.
[PubMed]
66.
Schmidt A, Frensch M, Schleheck D, Schink B, Müller N: Degradation of acetaldehyde and its precursors by Pelobacter carbinolicus and P. acetylenicus. PLoS One 2014;9:e115902.
[PubMed]
67.
Schwarz G, Mendel RR, Ribbe MW: Molybdenum cofactors, enzymes and pathways. Nature 2009;460:839-847.
[PubMed]
68.
Seiffert G: Structural and Functional Studies on Two Molybdopterin and Iron-Sulfur Containing Enzymes: Transhydroxylase from Pelobacter acidigallici and Aceytlene Hydratase from Pelobacter acetylenicus; thesis, University of Konstanz, 2007.
69.
Seiffert GB, Abt D, Ten Brink F, Fischer D, Einsle O, Kroneck PMH: Acetylene hydratase; in Messerschmidt A (ed): Handbook of Metalloproteins. Chichester, Wiley, 2008, vol 4/5, pp 541-548.
70.
Seiffert GB, Ullmann GM, Messerschmidt A, Schink B, Kroneck PM, Einsle O: Structure of the non-redox-active tungsten/[4Fe:4S] enzyme acetylene hydratase. Proc Natl Acad Sci USA 2007;104:3073-3077.
[PubMed]
71.
Stewart LJ, Bailey S, Bennett B, Charnock JM, Garner CD, McAlpine AS: Dimethylsulfoxide reductase: an enzyme capable of catalysis with either molybdenum or tungsten at the active site. J Mol Biol 2000;299:593-600.
[PubMed]
72.
Stewart WD, Fitzgerald GP, Burris RH: In situ studies on N2 fixation using the acetylene reduction technique. Proc Natl Acad Sci 1967;58:2071-2078.
[PubMed]
73.
Sudmeier JL, Reilley CN: Nuclear magnetic resonance studies of protonation of polyamine and aminocarboxylate compounds in aqueous solution. Anal Chem 1964;36:1698-1706.
74.
Ten Brink F: Acetylene Hydratase from Pelobacter acetylenicus. Functional Studies on a Gas-Processing Tungsten, Iron-Sulfur Enzyme by Site Directed Mutagenesis and Crystallography; thesis, University of Konstanz, 2010.
75.
Ten Brink F: Living on acetylene. A primordial energy source. Met Ions Life Sci 2014;14:15-35.
[PubMed]
76.
Ten Brink F, Schink B, Kroneck PMH: Exploring the active site of the tungsten, iron-sulfur enzyme acetylene hydratase. J Bacteriol 2011;193:1229-1236.
[PubMed]
77.
Thiele B, Rieder O, Jehmlich N, von Bergen M, Müller M, Boll M: Aromatizing cyclohexa-1,5-diene-1-carbonyl-coenzyme A oxidase. Characterization and its role in anaerobic aromatic metabolism. J Biol Chem 2008;283:20713-20721.
[PubMed]
78.
Ullmann GM, Bombarda E: pKa values and redox potentials of proteins. What do they mean? Biol Chem 2013;394:611-619.
[PubMed]
79.
Ullmann GM, Bombarda E: Continuum electrostatic analysis of proteins; in Náray-Szabó G (ed): Protein Modelling. Berlin, Springer, 2014, pp 135-163.
80.
Ullmann GM, Knapp E-W: Electrostatic computations of protonation and redox equilibria in proteins. Eur Biophys J 1999;28:533-551.
81.
Ullmann RT, Ullmann GM: GMCT: a Monte Carlo simulation package for macromolecular receptors. J Comput Chem 2012;33:887-900.
[PubMed]
82.
Unciuleac M, Warkentin E, Page CC, Boll M, Ermler U: Structure of a xanthine oxidase-related 4-hydroxybenzoyl-CoA reductase with an additional [4Fe-4S] cluster and an inverted electron flow. Structure 2004;12:2249-2256.
[PubMed]
83.
Vorholt JA, Thauer RK: Molybdenum and tungsten enzymes in C1 metabolism. Met Ions Biol Syst 2002;39:571-619.
[PubMed]
84.
Weinberg DR, Gagliardi CJ, Hull JF, Murphy CF, Kent CA, Westlake BC, Paul A, Ess DH, McCafferty DG, Meyer TJ: Proton-coupled electron transfer. Chem Rev 2012;112:4016-4093.
[PubMed]
85.
Weinert T, Huwiler SG, Kung JW, Weidenweber S, Hellwig P, Stärk H-J, Biskup T, Cotelesage JJH, George GN, Ermler U, Boll M: Structural basis of enzymatic benzene ring reduction. Nat Chem Biol 2015;11:586-591.
[PubMed]
86.
Wischgoll S, Heintz D, Peters F, Erxleben A, Sarnighausen E, Reski R, Van Dorsselaer A, Boll M: Gene clusters involved in anaerobic benzoate degradation of Geobacter metallireducens. Mol Microbiol 2005;58:1238-1252.
[PubMed]
87.
Zimmerman HE: A mechanistic analysis of the Birch reduction. Acc Chem Res 2012;45:164-170.
[PubMed]
You do not currently have access to this content.