The acetone-butanol-ethanol fermentation employing solventogenic clostridia was a major industrial process during the 20th century, but declined for economic reasons. In recent times, interest in the process has been revived due to the perceived potential of butanol as a superior biofuel. Redevelopment of an efficient fermentation process will require a detailed understanding of the physiology of carbohydrate utilization by the bacteria. Genome sequences have revealed that, as in other anaerobes, the phosphotransferase system (PTS) and associated regulatory functions are likely to play an important role in sugar uptake and its regulation. The genomes of Clostridium acetobutylicum and C. beijerinckii encode 13 and 43 phosphotransferases, respectively. Characterization of clostridial phosphotransferases has demonstrated that they are involved in the uptake and phosphorylation of hexoses, hexose derivatives and disaccharides, although the functions of many systems remain to be determined. Glucose is a dominant sugar which represses the utilization of other carbon sources, including the non-PTS pentose sugars xylose and arabinose, by the clostridia. Targeting of the CcpA-dependent mechanism of carbon catabolite repression has been shown to be an effective strategy for reducing the repressive effects of glucose, indicating potential for developing strains with improved fermentation performance.

1.
Al Makishah NH, Mitchell WJ: Dual substrate specificity of an N-acetylglucosamine phosphotransferase system in Clostridium beijerinckii. Appl Environ Microbiol 2013;79:6712-6718.
[PubMed]
2.
Annous BA, Blaschek HP: Isolation and characterization of Clostridium acetobutylicum mutants with enhanced amylolytic activity. Appl Environ Microbiol 1991;57:2544-2548.
[PubMed]
3.
Bao GH, Wang RJ, Zhu Y, et al: Complete genome sequence of Clostridium acetobutylicum DSM1731, a solvent-producing strain with multireplicon genome architecture. J Bacteriol 2011;193:5007-5008.
[PubMed]
4.
Barabote RD, Saier MH Jr: Comparative genome analyses of the bacterial phosphotransferase system. Microbiol Mol Biol Rev 2005;69:608-634.
[PubMed]
5.
Behrens S, Mitchell WJ, Bahl H: Molecular analysis of the mannitol operon of Clostridium acetobutytlicum encoding a phosphotransferases system and a putative PTS-modulated regulator. Microbiology 2001;147:75-86.
[PubMed]
6.
Bird E, Mitchell W, Green E, Tangney M: Molecular characterisation of arbutin utilization genes in Clostridium acetobutylicum ATCC 824 (abstract). 13th Eur Cong Biotechnol, Barcelona, 2007.
7.
Brown GD, Thomson JA: Isolation and characterization of an aryl-β-D-glucoside uptake and utilization system (abg) from the Gram-positive ruminal Clostridium species C. longisporum. Mol Gen Genet 1998;257:213-218.
[PubMed]
8.
Cooksley CM, Zhang Y, Wang H, Redl S, Winzer K, Minton NP: Targeted mutagenesis of the Clostridium acetobutylicum acetone-butanol-ethanol fermentation pathway. Met Eng 2012:14:630-641.
[PubMed]
9.
Dahl MK: Enzyme IIGlc contributes to trehalose metabolism in Bacillus subtilis. FEMS Microbiol Lett 1997;148:233-238.
10.
Del Cerro C, Santero-Felpeto C, Rojas A, Tortajada M, Ramon R, Garcia JL: Genome sequence of the butanol hyperproducer Clostridium saccharoperbutylacetonicum N1-4. Genome Announc 2013;1:e0007013.
[PubMed]
11.
Deutscher J, Aké FMD, Derkaoui M, et al: The bacterial phosphoenolpyruvate:carbohydrate phosphotransferase system: regulation by protein phosphorylation and phosphorylation-dependent protein-protein interactions. Microbiol Mol Biol Rev 2014;78:231-256.
[PubMed]
12.
Deutscher J, Francke C, Postma PW: How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev 2006;70:939-1031.
[PubMed]
13.
Dürre P: Fermentative butanol production: bulk chemical and biofuel. Ann NY Acad Sci 2008;1125:353-362.
[PubMed]
14.
Dürre P: Fermentative production of butanol - the academic perspective. Curr Opin Biotechnol 2011;22:331-336.
[PubMed]
15.
Formanek J, Mackie R, Blaschek HP: Enhanced butanol production by Clostridium beijerinckii BA101 grown in semidefined P2 medium containing 6% maltodextrin or glucose. Appl Environ Microbiol 1997;63:2306-2310.
[PubMed]
16.
Green EM: Fermentative production of butanol - the industrial perspective. Curr Opin Biotechnol 2011;22:337-343.
[PubMed]
17.
Grimmler C, Held C, Liebl W, Ehrenreich A: Transcriptional analysis of catabolite repression in Clostridium acetobutylicum growing on mixtures of D-glucose and D-xylose. J Biotechnol 2010;150:315-323.
[PubMed]
18.
Gu Y, Jiang Y, Yang S, Jiang W: Utilization of economical substrate-derived carbohydrates by solventogenic clostridia: pathway dissection, regulation and engineering. Curr Opin Biotechnol 2014;29:124-131.
[PubMed]
19.
Henstra SA, Tolner B, Duurkens RHT, Konings WN, Robillard GT: Cloning, expression, and isolation of the mannitol transport protein from the thermophilic bacterium Bacillus stearothermophilus. J Bacteriol 1996;178:5586-5591.
[PubMed]
20.
Honeyman AL, Curtiss R III: The mannitol-specific enzyme II (mtlA) gene and the mtlR gene of the PTS of Streptococcus mutans. Microbiology 2000;146:1565-1572.
[PubMed]
21.
Jones DT: Applied acetone-butanol fermentation; in Bahl H, Dürre P (eds): Clostridia: Biotechnology and Medical Applications. Weinheim, Wiley, 2001, pp 125-168.
22.
Jones DT, Woods DR: Acetone-butanol fermentation revisited. Microbiol Rev 1986;50:484-524.
[PubMed]
23.
Keis S, Shaheen R, Jones DT: Emended descriptions of Clostridium acetobutylicum and Clostridium beijerinckii, and descriptions of Clostridium saccharoperbutylacetonicum sp. nov. and Clostridium saccharobutylicum sp. nov. Int J Syst Evol Microbiol 2001;51:2095-2103.
[PubMed]
24.
Kuehne SA, Minton NP: ClosTron-mediated engineering of Clostridium. Bioengineered 2012;3:247-254.
[PubMed]
25.
Lee J, Mitchell WJ, Blaschek HP: Glucose uptake in Clostridium beijerinckii NCIMB 8052 and the solvent-hyperproducing mutant BA101. Appl Environ Microbiol 2001;67:5025-5031.
[PubMed]
26.
Lee J, Mitchell WJ, Tangney M, Blaschek HP: Evidence for the presence of an alternative glucose transport system in Clostridium beijerinckii NCIMB 8052 and the solvent-hyperproducing mutant BA101. Appl Environ Microbiol 2005;71:3384-3387.
[PubMed]
27.
Lenz TG, Moreira AR: Economic evaluation of the acetone butanol fermentation. Ind Eng Chem Prod Res Dev 1980;19:478-483.
28.
Lütke-Eversloh T: Application of new metabolic engineering tools for Clostridium acetobutylicum. Appl Microbiol Biotechnol 2014;98:5823-5837.
[PubMed]
29.
Martin-Verstraete I, Débarbouillé M, Klier A, Rapoport G: Levanase operon of Bacillus subtilis includes a fructose-specific phosphotransferase system regulating the expression of the operon. J Mol Biol 1990;214:657-671.
[PubMed]
30.
Martin-Verstraete I, Michel V, Charbit A: The levanase operon of Bacillus subtilis expressed in Escherichia coli can substitute for the mannose permease in mannose uptake and bacteriophage lambda infection. J Bacteriol 1996;178:7112-7119.
[PubMed]
31.
Mitchell WJ: Physiology of carbohydrate to solvent conversion by clostridia. Adv Microb Physiol 1998;39:31-130.
[PubMed]
32.
Mitchell WJ, Shaw JE, Andrews L: Properties of the glucose phosphotransferase system of Clostridium acetobutylicum NCIB 8052. Appl Environ Microbiol 1991;57:2534-2539.
[PubMed]
33.
Mitchell WJ, Tangney M: Carbohydrate uptake by the phosphotransferase system and other mechanisms; in Dürre P (ed): Handbook on Clostridia. Boca Raton, Taylor & Francis, 2005, pp 155-175.
34.
Nölling J, Breton G, Omelchenko MV, et al: Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum. J Bacteriol 2001;183:4823-4838.
[PubMed]
35.
Pikis A, Immel S, Robrish SA, Thompson J: Metabolism of sucrose and its five isomers by Fusobacterium mortiferum. Microbiology 2002;148:843-852.
[PubMed]
36.
Poehlein A, Hartwich A, Krabben P, et al: Complete genome sequence of the solvent producer Clostridium saccharobutylicum NCP262 (DSM 13864). Genome Announc 2013;1:e0099713.
[PubMed]
37.
Poehlein A, Krabben P, Dürre P, Daniel R: Complete genome sequence of the solvent producer Clostridium saccharoperbutylacetonicum strain DSM 14923. Genome Announc 2014;2:e0105614.
[PubMed]
38.
Reid SJ, Rafudeen MS, Leat NG: The genes controlling sucrose utilization in Clostridium beijerinckii NCIMB 8052 constitute an operon. Microbiology 1999;145:1461-1472.
[PubMed]
39.
Reizer J, Schneider B, Reizer A, Saier MH Jr: A hybrid response regulator possessing a PEP-dependent phosphorylation domain. Microbiology 1999;145:987-989.
[PubMed]
40.
Ren C, Gu Y, Hu S, Wu Y, Wang P, Yang Y, Yang C, Yang S, Jiang W: Identification and inactivation of pleiotropic regulator CcpA to eliminate glucose repression of xylose utilization in Clostridium acetobutylicum. Met Eng 2010;12:446-454.
[PubMed]
41.
Ren C, Gu Y, Zhang W, Yang C, Yang S, Jiang W: Pleiotropic functions of catabolite control protein CcpA in butanol-producing Clostridium acetobutylicum. BMC Genomics 2012;13:349.
[PubMed]
42.
Sandoval-Espinola WJ, Makwana ST, Chinn MS, et al: Comparative phenotypic analysis and genome sequence of Clostridium beijerinckii SA-1, an offspring of NCIMB 8052. Microbiology 2013;159:2558-2570.
[PubMed]
43.
Servinsky MD, Kiel JT, Dupuy NF, Sund CJ: Transcriptional analysis of differential carbohydrate utilization by Clostridium acetobutylicum. Microbiology 2010;156:3478-3491.
[PubMed]
44.
Shi Y, Li Y-X, Li Y-Y: Large number of phosphotransferase genes in the Clostridium beijerinckii NCIMB 8052 genome and the study on their evolution. BMC Bioinformatics 2010;11(suppl 11):S9.
[PubMed]
45.
Shi Z, Blaschek HP: Transcriptional analysis of Clostridium beijerinckii NCIMB 8052 and the hyper-butanol-producing mutant BA101 during the shift from acidogenesis to solventogenesis. Appl Environ Microbiol 2008;74:7709-7714.
[PubMed]
46.
Sutrina SL, Reddy P, Saier MH Jr, Reizer J: The glucose permease of Bacillus subtilis is a single polypeptide chain that functions to energise the sucrose permease. J Biol Chem 1990;265:18581-18589.
[PubMed]
47.
Tangney M, Brehm JK, Minton NP, Mitchell WJ: A gene system for glucitol transport and metabolism in Clostridium beijerinckii NCIMB 8052. App Environ Microbiol 1998a;64:1612-1619.
[PubMed]
48.
Tangney M, Galinier A, Deutscher J, Mitchell WJ: Analysis of the elements of catabolite repression in Clostridium acetobutylicum ATCC 824. J Mol Microbiol Biotechnol 2003;6:6-11.
[PubMed]
49.
Tangney M, Mitchell WJ: Analysis of a catabolic operon for sucrose transport and metabolism in Clostridium aetobutylicum ATCC 824. J Mol Microbiol Biotechnol 2000;2:71-80.
[PubMed]
50.
Tangney M, Mitchell WJ: Regulation of catabolic gene systems; in Dürre P (ed): Handbook on Clostridia. Boca Raton, Taylor & Francis, 2005, pp 583-605.
51.
Tangney M, Mitchell WJ: Characterisation of a glucose phosphotransferase system in Clostridium acetobutylicum ATCC 824. Appl Microbiol Biotechnol 2007;74:398-405.
[PubMed]
52.
Tangney M, Rousse C, Yazdanian M, Mitchell WJ: Sucrose transport and metabolism in Clostridium beijerinckii NCIMB 8052. J Appl Microbiol 1998b;84:914-919.
[PubMed]
53.
Tangney M, Winters GT, Mitchell WJ: Characterization of a maltose transport system in Clostridium acetobutylicum ATCC 824. J Ind Microbiol Biotechnol 2001;27:298-306.
[PubMed]
54.
Thompson J, Hess S, Pikis A: Genes malh and pagl of Clostridium acetobutylicum ATCC 824 encode NAD+- and Mn2+-dependent phospho-α-glucosidase(s). J Biol Chem 2004;279:1553-1561.
[PubMed]
55.
Thompson J, Robrish SA, Immel S, Lichtenthaler FW, Hall BG, Pikis A: Metabolism of sucrose and its five linkage-isomeric α-D-glucosyl-D-fructoses by Klebsiella pneumoniae: participation and properties of sucrose-6-phosphate hydrolase and phospho-α-glucosidase. J Biol Chem 2001;276:37415-37425.
[PubMed]
56.
Voigt C, Bahl H, Fischer R-J: Identification of PTSFru as the major fructose uptake system of Clostridium acetobutylicum. Appl Microbiol Biotechnol 2014;98:7161-7172.
[PubMed]
57.
Wang Y, Li X, Mao Y, Blaschek HP: Genome-wide dynamic transcriptional profiling in Clostridium beijerinckii NCIMB 8052 using single-nucleotide resolution RNA-Seq. BMC Genomics 2012;13:102.
[PubMed]
58.
Xiao H, Gu Y, Ning Y, Yang Y, Mitchell WJ, Jiang W, Yang S: Confirmation and elimination of xylose metabolism bottlenecks in glucose phosphoenolpyruvate-dependent phosphotransferase system-deficient Clostridium acetobutylicum for simultaneous utilization of glucose, xylose and arabinose. Appl Environ Microbiol 2011;77:7886-7895.
[PubMed]
59.
Yebra MJ, Monedero V, Zúñiga M, Deutscher J, Pérez-Martínez G: Molecular analysis of the glucose-specific phosphoenolpyruvate:sugar phosphotransferase system from Lactobacillus casei and its links with the control of sugar metabolism. Microbiology 2006;152:95-104.
[PubMed]
60.
Yu Y, Aass HC, Tangney M, Mitchell, WJ: Analysis of the mechanism and regulation of lactose transport and metabolism in Clostridium acetobutylicum ATCC 824. Appl Environ Microbiol 2007;73:1842-1850.
[PubMed]
61.
Zeng L, Martino NC, Burne RA: Two gene clusters coordinate galactose and lactose metabolism in Streptococcus gordonii. Appl Environ Microbiol 2012;78:5597-5605.
[PubMed]
62.
Zeng L, Xue P, Stanhope MJ, Burne RA: A galactose-specific sugar:phosphotransferase permease is prevalent in the non-core genome of Streptococcus mutans. Mol Oral Microbiol 2013;28:292-301.
[PubMed]
You do not currently have access to this content.