We report the first enzymatic synthesis of <smlcap>D</smlcap>-tagatose-1-phosphate (Tag-1P) by the multicomponent phosphoenolpyruvate:sugar phosphotransferase system (PEP-PTS) present in tagatose-grown cells of Klebsiella pneumoniae. Physicochemical characterization by 31P and 1H nuclear magnetic resonance spectroscopy reveals that, in solution, this derivative is primarily in the pyranose form. Tag-1P was used to characterize the putative tagatose-1-phosphate kinase (TagK) of the Bacillus licheniformis PTS-mediated <smlcap>D</smlcap>-tagatose catabolic pathway (Bli-TagP). For this purpose, a soluble protein fusion was obtained with the 6 His-tagged trigger factor (TFHis6) of Escherichia coli. The active fusion enzyme was named TagK-TFHis6. Tag-1P and <smlcap>D</smlcap>-fructose-1-phosphate are substrates for the TagK-TFHis6 enzyme, whereas the isomeric derivatives <smlcap>D</smlcap>-tagatose-6-phosphate and <smlcap>D</smlcap>-fructose-6-phosphate are inhibitors. Studies of catalytic efficiency (kcat/Km) reveal that the enzyme specificity is markedly in favor of Tag-1P as the substrate. Importantly, we show in vivo that the transfer of the phosphate moiety from PEP to the B. licheniformis tagatose-specific Enzyme II in E. coli is inefficient. The capability of the PTS general cytoplasmic components of B. subtilis, HPr and Enzyme I to restore the phosphate transfer is demonstrated.

1.
Battistel MD, Azurmendi HF, Yu B, Freedberg DI: NMR of glycans: shedding new light on old problems. Prog Nucl Magn Reson Spectrosc 2014;79:48-68.
[PubMed]
2.
Battistel MD, Pendrill R, Widmalm G, Freedberg DI: Direct evidence for hydrogen bonding in glycans: a combined NMR and molecular dynamics study. J Phys Chem B 2013;117:4860-4869.
[PubMed]
3.
Bissett DL, Anderson RL: Lactose and D-galactose metabolism in group N streptococci: presence of enzymes for both the D-galactose 1-phosphate and D-tagatose 6-phosphate pathways. J Bacteriol 1974;117:318-320.
[PubMed]
4.
Bissett DL, Anderson RL: Lactose and D-galactose metabolism in Staphylococcus aureus. III. Purification and properties of D-tagatose-6-phosphate kinase. J Biol Chem 1980a;255:8745-8749.
[PubMed]
5.
Bissett DL, Anderson RL: Lactose and D-galactose metabolism in Staphylococcus aureus. IV. Isolation and properties of a class I D-ketohexose-1,6-diphosphate aldolase that catalyzes the cleavage of D-tagatose 1,6-diphosphate. J Biol Chem 1980b;255:8750-8755.
[PubMed]
6.
Bissett DL, Wenger WC, Anderson RL: Lactose and D-galactose metabolism in Staphylococcus aureus. II. Isomerization of D-galactose 6-phosphate to D-tagatose 6-phosphate by a specific D-galactose-6-phosphate isomerase. J Biol Chem 1980;255:8740-8744.
[PubMed]
7.
Bork P, Sander C, Valencia A: Convergent evolution of similar enzymatic function on different protein folds: the hexokinase, ribokinase, and galactokinase families of sugar kinases. Protein Sci 1993;2:31-40.
[PubMed]
8.
Brinkkotter A, Shakeri-Garakani A, Lengeler JW: Two class II D-tagatose-bisphosphate aldolases from enteric bacteria. Arch Microbiol 2002;177:410-419.
[PubMed]
9.
Cai M, Williams DC Jr, Wang G, Lee BR, Peterkofsky A, Clore GM: Solution structure of the phosphoryl transfer complex between the signal-transducing protein IIAGlucose and the cytoplasmic domain of the glucose transporter IICBGlucose of the Escherichia coli glucose phosphotransferase system. J Biol Chem 2003;278:25191-25206.
[PubMed]
10.
Chassy BM, Thompson J: Regulation of lactose-phosphoenolpyruvate-dependent phosphotransferase system and β-D-phosphogalactoside galactohydrolase activities in Lactobacillus casei. J Bacteriol 1983;154:1195-1203.
[PubMed]
11.
Clore GM, Venditti V: Structure, dynamics and biophysics of the cytoplasmic protein-protein complexes of the bacterial phosphoenolpyruvate: sugar phosphotransferase system. Trends Biochem Sci 2013;38:515-530.
[PubMed]
12.
Deutscher J, Francke C, Postma PW: How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev 2006;70:939-1031.
[PubMed]
13.
Eyrisch O, Sinerius G, Fessner W-D: Facile enzymic de novo synthesis and NMR spectroscopic characterization of D-tagatose 1,6-bisphosphate. Carbohydr Res 1993;238:287-306.
14.
Freimund S, Huwig A, Giffhorn F, Köpper S: Convenient chemo-enzymatic synthesis of D-tagatose. J Carbohydr Chem 1996;15:115-120.
15.
Gonzy-Treboul G, Zagorec M, Rain-Guion MC, Steinmetz M: Phosphoenolpyruvate:sugar phosphotransferase system of Bacillus subtilis: nucleotide sequence of ptsX, ptsH and the 5′-end of ptsI and evidence for a ptsHI operon. Mol Microbiol 1989;3:103-112.
[PubMed]
16.
Hamilton IR, Lebtag H: Lactose metabolism by Streptococcus mutans: evidence for induction of the tagatose 6-phosphate pathway. J Bacteriol 1979;140:1102-1104.
[PubMed]
17.
Hamilton IR, Lo GC: Co-induction of β-galactosidase and the lactose-P-enolpyruvate phosphotransferase system in Streptococcus salivarius and Streptococcus mutans. J Bacteriol 1978;136:900-908.
[PubMed]
18.
Herzberg O: An atomic model for protein-protein phosphoryl group transfer. J Biol Chem 1992;267:24819-24823.
[PubMed]
19.
Kawai Y, Marles-Wright J, Cleverley RM, Emmins R, Ishikawa S, Kuwano M, Heinz N, Bui NK, Hoyland CN, Ogasawara N, Lewis RJ, Vollmer W, Daniel RA, Errington J: A widespread family of bacterial cell wall assembly proteins. EMBO J 2011;30:4931-4941.
[PubMed]
20.
Koh JH, Choi SH, Park SW, Choi NJ, Kim Y, Kim SH: Synbiotic impact of tagatose on viability of Lactobacillus rhamnosus strain GG mediated by the phosphotransferase system (PTS). Food Microbiol 2013;36:7-13.
[PubMed]
21.
Meadow ND, Fox DK, Roseman S: The bacterial phosphoenolpyruvate: glycose phosphotransferase system. Annu Rev Biochem 1990;59:497-542.
[PubMed]
22.
Postma PW, Lengeler JW, Jacobson GR: Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria. Microbiol Rev 1993;57:543-594.
[PubMed]
23.
Reizer J, Saier MH Jr, Deutscher J, Grenier F, Thompson J, Hengstenberg W: The phosphoenolpyruvate:sugar phosphotransferase system in Gram-positive bacteria: properties, mechanism, and regulation. Crit Rev Microbiol 1988;15:297-338.
[PubMed]
24.
Reizer J, Sutrina SL, Wu LF, Deutscher J, Reddy P, Saier MH Jr: Functional interactions between proteins of the phosphoenolpyruvate:sugar phosphotransferase systems of Bacillus subtilis and Escherichia coli. J Biol Chem 1992;267:9158-9169.
[PubMed]
25.
Rosey EL, Oskouian B, Stewart GC: Lactose metabolism by Staphylococcus aureus: characterization of lacABCD, the structural genes of the tagatose 6-phosphate pathway. J Bacteriol 1991;173:5992-5998.
[PubMed]
26.
Rosey EL, Stewart GC: Nucleotide and deduced amino acid sequences of the lacR, lacABCD, and lacFE genes encoding the repressor, tagatose 6-phosphate gene cluster, and sugar-specific phosphotransferase system components of the lactose operon of Streptococcus mutans. J Bacteriol 1992;174:6159-6170.
[PubMed]
27.
Rucker SP, Shaka AJ: Broad-band homonuclear cross polarization in 2D NMR using DIPSI-2. Mol Phys 1989;68:509-517.
28.
Saier MH Jr: Families of transmembrane sugar transport proteins. Mol Microbiol 2000;35:699-710.
[PubMed]
29.
Saier MH Jr, Reizer J: Proposed uniform nomenclature for the proteins and protein domains of the bacterial phosphoenolpyruvate:sugar phosphotransferase system. J Bacteriol 1992;174:1433-1438.
[PubMed]
30.
Shakeri-Garakani A, Brinkkotter A, Schmid K, Turgut S, Lengeler JW: The genes and enzymes for the catabolism of galactitol, D-tagatose, and related carbohydrates in Klebsiella oxytoca m5a1 and other enteric bacteria display convergent evolution. Mol Genet Genomics 2004;271:717-728.
[PubMed]
31.
Thompson J: Lactose metabolism in Streptococcus lactis: phosphorylation of galactose and glucose moieties in vivo. J Bacteriol 1979;140:774-785.
[PubMed]
32.
Thompson J: Regulation of sugar transport and metabolism in the lactic acid bacteria. FEMS Microbiol Rev 1987;46:221-231.
33.
Thompson J, Robrish SA, Immel S, Lichtenthaler FW, Hall BG, Pikis A: Metabolism of sucrose and its five linkage-isomeric α-D-glucosyl-D-fructoses by Klebsiella pneumoniae: participation and properties of sucrose-6-phosphate hydrolase and phospho-α-glucosidase. J Biol Chem 2001a;276:37415-37425.
[PubMed]
34.
Thompson J, Robrish SA, Pikis A, Brust A, Lichtenthaler FW: Phosphorylation and metabolism of sucrose and its five linkage-isomeric α-D-glucosyl-D-fructoses by Klebsiella pneumoniae. Carbohydr Res 2001b;331:149-161.
[PubMed]
35.
Thompson J, Ruvinov SB, Freedberg DI, Hall BG: Cellobiose-6-phosphate hydrolase (CelF) of Escherichia coli: characterization and assignment to the unusual family 4 of glycosylhydrolases. J Bacteriol 1999;181:7339-7345.
[PubMed]
36.
van der Heiden E, Delmarcelle M, Lebrun S, Freichels R, Brans A, Vastenavond CM, Galleni M, Joris B: A pathway closely related to the D-tagatose pathway of Gram-negative enterobacteria identified in the Gram-positive bacterium Bacillus licheniformis. Appl Environ Microbiol 2013;79:3511-3515.
[PubMed]
37.
van Rooijen RJ, van Schalkwijk S, de Vos WM: Molecular cloning, characterization, and nucleotide sequence of the tagatose 6-phosphate pathway gene cluster of the lactose operon of Lactococcus lactis. J Biol Chem 1991;266:7176-7181.
[PubMed]
38.
Wade HE, Morgan DM: Detection of phosphate esters on paper chromatograms. Nature 1953;171:529-530.
[PubMed]
39.
Wang G, Louis JM, Sondej M, Seok YJ, Peterkofsky A, Clore GM: Solution structure of the phosphoryl transfer complex between the signal transducing proteins Hpr and IIAGlucose of the Escherichia coli phosphoenolpyruvate:sugar phosphotransferase system. EMBO J 2000;19:5635-5649.
[PubMed]
40.
Yamamoto H, Serizawa M, Thompson J, Sekiguchi J: Regulation of the glv operon in Bacillus subtilis: YfiA (GlvR) is a positive regulator of the operon that is repressed through Ccpa and cre. J Bacteriol 2001;183:5110-5121.
[PubMed]
You do not currently have access to this content.