Abstract
Knowledge of the chromosome biology of archaeal species has grown considerably in the last 15 years, since the publication of the first full archaeal genome sequences. A number of model organisms have been studied, revealing a striking variety of mechanisms and modes of genome duplication and segregation. While clear sequence relationships between archaeal and eukaryotic replication proteins are well known, some archaea also seem to possess organizational parameters for replication and segregation that reveal further striking parallels to eukaryotes.
Journal Section:
Review Article
References
1.
Aussel L, Barre FX, Aroyo M, Stasiak A, Stasiak AZ, Sherratt D: Ftsk is a DNA motor protein that activates chromosome dimer resolution by switching the catalytic state of the XerC and XerD recombinases. Cell 2002;108:195-205.
[PubMed]
2.
Barry ER, Bell SD: DNA replication in the archaea. Microbiol Mol Biol Rev 2006;70:876-887.
[PubMed]
3.
Bell SD: Archaeal orc1/cdc6 proteins. Subcell Biochem 2012;62:59-69.
[PubMed]
4.
Bell SP, Dutta A: DNA replication in eukaryotic cells. Annu Rev Biochem 2002;71:333-374.
[PubMed]
5.
Bizard A, Garnier F, Nadal M: TopR2, the second reverse gyrase of Sulfolobus solfataricus, exhibits unusual properties. J Mol Biol 2011;408:839-849.
[PubMed]
6.
Breuert S, Allers T, Spohn G, Soppa J: Regulated polyploidy in halophilic archaea. PLoS One 2006;1:e92
[PubMed]
7.
Cortez D, Quevillon-Cheruel S, Gribaldo S, Desnoues N, Sezonov G, Forterre P, Serre MC: Evidence for a Xer/dif system for chromosome resolution in archaea. PLoS Genet 2010;6:e1001166.
[PubMed]
8.
Dueber ELC, Corn JE, Bell SD, Berger JM: Replication origin recognition and deformation by a heterodimeric archaeal Orc1 complex. Science 2007;317:1210-1213.
[PubMed]
9.
Dueber EC, Costa A, Corn JE, Bell SD, Berger JM: Molecular determinants of origin discrimination by Orc1 initiators in archaea. Nucleic Acids Res 2011;39:3621-3631.
[PubMed]
10.
Duggin IG, Dubarry N, Bell SD: Replication termination and chromosome dimer resolution in the archaeon Sulfolobus solfataricus. EMBO J 2011;30:145-153.
[PubMed]
11.
Duggin IG, McCallum SA, Bell SD: Chromosome replication dynamics in the archaeon Sulfolobus acidocaldarius. Proc Natl Acad Sci USA 2008a;105:16737-16742.
[PubMed]
12.
Duggin IG, Wake RG, Bell SD, Hill TM: The replication fork trap and termination of chromosome replication. Mol Microbiol 2008b;70:1323-1333.
[PubMed]
13.
Farkas J, Chung D, DeBarry M, Adams MW, Westpheling J: Defining components of the chromosomal origin of replication of the hyperthermophilic archaeon Pyrococcus furiosus needed for construction of a stable replicating shuttle vector. Appl Environ Microbiol 2011;77:6343-6349.
[PubMed]
14.
Gristwood T, Duggin IG, Wagner M, Albers SV, Bell SD: The sub-cellular localization of Sulfolobus DNA replication. Nucleic Acids Res 2012;40:5487-5496
[PubMed]
15.
Guy L, Ettema TJ: The archaeal ‘TACK' superphylum and the origin of eukaryotes. Trends Microbiol 2011;19:580-587.
[PubMed]
16.
Hartman AL, Norais C, Badger JH, Delmas S, Haldenby S, Madupu R, Robinson J, Khouri H, Ren Q, Lowe TM, Maupin-Furlow J, Pohlschroder M, Daniels C, Pfeiffer F, Allers T, Eisen JA: The complete genome sequence of Haloferax volcanii DS2, a model archaeon. PLoS One 2010;5:e9605.
[PubMed]
17.
Hawkins M, Malla S, Blythe MJ, Nieduszynski CA, Allers T: Accelerated growth in the absence of DNA replication origins. Nature 2013;503:544-547.
[PubMed]
18.
Lindas AC, Bernander R: The cell cycle of archaea. Nat Rev Microbiol 2013;11:627-638.
[PubMed]
19.
Lulchev P, Klostermeier D: Reverse gyrase - recent advances and current mechanistic understanding of positive DNA supercoiling. Nucleic Acids Res 2014;42:8200-8213.
[PubMed]
20.
Lundgren M, Andersson A, Chen LM, Nilsson P, Bernander R: Three replication origins in Sulfolobus species: synchronous initiation of chromosome replication and asynchronous termination. Proc Natl Acad Sci USA 2004;101:7046-7051.
[PubMed]
21.
Lundgren M, Malandrin L, Eriksson S, Huber H, Bernander R: Cell cycle characteristics of crenarchaeota: unity among diversity. J Bacteriol 2008;190:5362-5367.
[PubMed]
22.
Majernik AI, Chong JPJ: A conserved mechanism for replication origin recognition and binding in archaea. Biochem J 2008;409:511-518.
[PubMed]
23.
Majernik AI, Lundgren M, McDermott P, Bernander R, Chong JPJ: DNA content and nucleoid distribution in Methanothermobacter thermautotrophicus. J Bacteriol 2005;187:1856-1858.
[PubMed]
24.
Makarova KS, Yutin N, Bell SD, Koonin EV: Evolution of diverse cell division and vesicle formation systems in archaea. Nat Rev Microbiol 2010;8:731-741.
[PubMed]
25.
Matsunaga F, Forterre P, Ishino Y, Myllykallio H: In vivo interactions of archaeal Cdc6/Orc1 and minichromosome maintenance proteins with the replication origin. Proc Natl Acad Sci USA 2001;98:11152-11157.
[PubMed]
26.
Michel B, Bernander R: Chromosome replication origins: do we really need them? Bioessays 2014;36:585-590.
[PubMed]
27.
Myllykallio H, Lopez P, Lopez-Garcia P, Heilig R, Saurin W, Zivanovic Y, Philippe H, Forterre P: Bacterial mode of replication with eukaryotic-like machinery in a hyperthermophilic archaeon. Science 2000;288:2212-2215.
[PubMed]
28.
Naor A, Lapierre P, Mevarech M, Papke RT, Gophna U: Low species barriers in halophilic archaea and the formation of recombinant hybrids. Curr Biol 2012;22:1444-1448.
[PubMed]
29.
Norais C, Hawkins M, Hartman AL, Eisen JA, Myllykallio H, Allers T: Genetic and physical mapping of DNA replication origins in Haloferax volcanii. PLoS Genet 2007;3:729-743.
[PubMed]
30.
Pelve EA, Lindas AC, Knoppel A, Mira A, Bernander R: Four chromosome replication origins in the archaeon Pyrobaculum calidifontis. Mol Microbiol 2012;85:986-995.
[PubMed]
31.
Pelve EA, Martens-Habbena W, Stahl DA, Bernander R: Mapping of active replication origins in vivo in thaum- and euryarchaeal replicons. Mol Microbiol 2013;90:538-550.
[PubMed]
32.
Reyes-Lamothe R, Possoz C, Danilova O, Sherratt DJ: Independent positioning and action of Escherichia coli replisomes in live cells. Cell 2008;133:90-102.
[PubMed]
33.
Rivera MC, Lake JA: The ring of life provides evidence for a genome fusion origin of eukaryotes. Nature 2004;431:152-155.
[PubMed]
34.
Robinson NP, Bell SD: Extrachromosomal element capture and the evolution of multiple replication origins in archaeal chromosomes. Proc Natl Acad Sci USA 2007;104:5806-5811.
[PubMed]
35.
Robinson NP, Blood KA, McCallum SA, Edwards PAW, Bell SD: Sister chromatid junctions in the hyperthermophilic archaeon Sulfolobus solfataricus. EMBO J 2007;26:816-824.
[PubMed]
36.
Robinson NP, Dionne I, Lundgren M, Marsh VL, Bernander R, Bell SD: Identification of two origins of replication in the single chromosome of the archaeon Sulfolobus solfataricus. Cell 2004;116:25-38.
[PubMed]
37.
Rudolph CJ, Upton AL, Stockum A, Nieduszynski CA, Lloyd RG: Avoiding chromosome pathology when replication forks collide. Nature 2013;500:608-611.
[PubMed]
38.
Samson RY, Bell SD: Ancient ESCRTs and the evolution of binary fission. Trends Microbiol 2009;17:507-513.
[PubMed]
39.
Samson RY, Bell SD: Cell cycles and cell division in the archaea. Curr Opin Microbiol 2011;14:350-356.
[PubMed]
40.
Samson RY, Xu Y, Gadelha C, Stone TA, Faqiri JN, Li D, Qin N, Pu F, Liang YX, She Q, Bell SD: Specificity and function of archaeal DNA replication initiator proteins. Cell Rep 2013;3:485-496.
[PubMed]
41.
Sherratt DJ: Bacterial chromosome dynamics. Science 2003;301:780-785.
[PubMed]
42.
Wang X, Reyes-Lamothe R, Sherratt DJ: Modulation of Escherichia coli sister chromosome cohesion by topoisomerase IV. Genes Dev 2008;22:2426-2433.
[PubMed]
43.
Williams TA, Foster PG, Cox CJ, Embley TM: An archaeal origin of eukaryotes supports only two primary domains of life. Nature 2013;504:231-236.
[PubMed]
44.
Woese CR, Fox GE: Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci USA 1977;74:5088-5090.
[PubMed]
45.
Wu L, Hickson ID: The Bloom syndrome helicase suppresses crossing over during homologous recombination. Nature 2003;426:870-874.
[PubMed]
46.
Wu Z, Liu J, Yang H, Liu H, Xiang H: Multiple replication origins with diverse control mechanisms in Haloarcula hispanica. Nucleic Acids Res 2014;42:2282-2294.
[PubMed]
47.
Zerulla K, Chimileski S, Nather D, Gophna U, Papke RT, Soppa J: DNA as a phosphate storage polymer and the alternative advantages of polyploidy for growth or survival. PLoS One 2014;9:e94819.
[PubMed]
48.
Zerulla K, Soppa J: Polyploidy in haloarchaea: advantages for growth and survival. Front Microbiol 2014;5:274.
[PubMed]
© 2015 S. Karger AG, Basel
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
2015
You do not currently have access to this content.