The glycolytic intermediate phosphoenolpyruvate (PEP) is a precursor of several cellular components, including various aromatic compounds. Modifications to the PEP node such as PEP:sugar phosphotransferase system (PTS) or pyruvate kinase inactivation have been shown to have a positive effect on aromatics production capacity in Escherichia coli and Bacillus subtilis. In this study, pyruvate kinase and PTS-deficient B. subtilis strains were employed for the construction of derivatives lacking shikimate kinase activity that accumulate two industrially valuable chemicals, the intermediates of the common aromatic pathway, shikimic and dehydroshikimic acids. The pyruvate kinase-deficient strain (CLC6-PYKA) showed the best production parameters under resting-cell conditions. Compared to the PTS-deficient strain, the shikimic and dehydroshikimic acids specific production rates for CLC6-PYKA were 1.8- and 1.7-fold higher, respectively. A batch fermentor culture using complex media supplemented with 83 g/l of glucose was developed with strain CLC6-PYKA, where final titers of 4.67 g/l (shikimic acid) and 6.2 g/l (dehydroshikimic acid) were produced after 42 h.

1.
Báez JL, Bolívar F, Gosset G: Determination of 3-deoxy-D-arabino-heptulosonate 7-phosphate productivity and yield from glucose in Escherichia coli devoid of the glucose phosphotransferase transport system. Biotechnol Bioeng 2001;73:530-535.
[PubMed]
2.
Bochkov D, Sysolyatin S, Kalashnikov A, Surmacheva I: Shikimic acid: review of its analytical, isolation, and purification techniques from plant and microbial sources. J Chem Biol 2012;5:5-17.
[PubMed]
3.
Cabrera-Valladares N, Martinez LM, Flores N, Hernández-Chávez G, Martínez A, Bolívar F, Gosset G: Physiologic consequences of glucose transport and phosphoenolpyruvate node modifications in Bacillus subtilis 168. J Mol Microbiol Biotechnol 2012;22:177-197.
[PubMed]
4.
Chand P: Recent advances in the discovery and synthesis of neuraminidase inhibitors. Expert Opin Ther Patents 2005;15:1009-1025.
5.
Chandran SS, Yi J, Draths KM, Daeniken RV, Weber W, Frost JW: Phosphoenolpyruvate availability and the biosynthesis of shikimic acid. Biotechnol Prog 2003;19:808-814.
[PubMed]
6.
De Anda R, Lara AR, Hernandez V, Hernandez-Montalvo V, Gosset G, Bolívar F, Ramirez OT: Replacement of the glucose phosphotransferase transport system by galactose permease reduces acetate accumulation and improves process performance of Escherichia coli for recombinant protein production without impairment of growth rate. Metab Eng 2006;8:281-290.
[PubMed]
7.
Draths KM, Knop DR, Frost JW: Shikimic acid and quinic acid: replacing isolation from plant sources with recombinant microbial biocatalysis. J Am Chem Soc 1999;121:1603-1604.
8.
Escalante A, Calderon R, Valdivia A, de Anda R, Hernandez G, Ramirez O, Gosset G, Bolívar F: Metabolic engineering for the production of shikimic acid in an evolved Escherichia coli strain lacking the phosphoenolpyruvate: carbohydrate phosphotransferase system. Microb Cell Fact 2010;9:21.
[PubMed]
9.
Fiegler H, Bassias J, Jankovic I, Bruckner R: Identification of a gene in Staphylococcus xylosus encoding a novel glucose uptake protein. J Bacteriol 1999;181:4929-4936.
[PubMed]
10.
Flores S, Gosset G, Flores N, de Graaf AA, Bolívar F: Analysis of carbon metabolism in Escherichia coli strains with an inactive phosphotransferase system by 13C labeling and NMR spectroscopy. Metab Eng 2002;4:124-137.
[PubMed]
11.
Fry B, Zhu T, Domach MM, Koepsel RR, Phalakornkule C, Ataai MM: Characterization of growth and acid formation in a Bacillus subtilis pyruvate kinase mutant. Appl Environ Microbiol 2000;66:4045-4049.
[PubMed]
12.
Gong J, Xu W: Different synthetic strategies of oseltamivir phosphate: a potent influenza neuraminidase inhibitor. Curr Med Chem 2008;15:3145-3159.
[PubMed]
13.
Gosset G: Improvement of Escherichia coli production strains by modification of the phosphoenolpyruvate:sugar phosphotransferase system. Microb Cell Fact 2005;4:1-11.
[PubMed]
14.
Gosset G, Yong-Xiao J, Berry A: A direct comparison of approaches for increasing carbon flow to aromatic biosynthesis in Escherichia coli. J Ind Microbiol 1996;17:47-52.
[PubMed]
15.
Hernández-Montalvo V, Martinez A, Hernández-Chavez G, Bolívar F, Valle F, Gosset G: Expression of galp and glk in a Escherichia coli PTS mutant restores glucose transport and increases glycolytic flux to fermentation products. Biotechnol Bioeng 2003;83:687-694.
[PubMed]
16.
Iomantas Y, Abalakina E, Polanuer B, Yampolskaya T, Bachina T, Kozlov Y: Method for producing shikimic acid. US patent 6436664. 2002.
17.
Johansson L, Liden G: Transcriptome analysis of a shikimic acid producing strain of Escherichia coli W3110 grown under carbon- and phosphate-limited conditions. J Biotechnol 2006;126:528-545.
[PubMed]
18.
Johansson L, Lindskog A, Silfversparre G, Cimander C, Nielsen KF, Lidén G: Shikimic acid production by a modified strain of E. coli (W3110.Shik1) under phosphate-limited and carbon-limited conditions. Biotechnol Bioeng 2005;92:541-552.
[PubMed]
19.
Juminaga D, Baidoo EEK, Redding-Johanson AM, Batth TS, Burd H, Mukhopadhyay A, Petzold CJ, Keasling JD: Modular engineering of L-tyrosine production in Escherichia coli. Appl Environ Microbiol 2012;78:89-98.
[PubMed]
20.
Knop DR, Draths KM, Chandran SS, Barker JL, von Daeniken R, Weber W, Frost JW: Hydroaromatic equilibration during biosynthesis of shikimic acid. J Am Chem Soc 2001;123:10173-10182.
[PubMed]
21.
Kramer M, Bongaerts J, Bovenberg R, Kremer S, Muller U, Orf S, Wubbolts M, Raeven L: Metabolic engineering for microbial production of shikimic acid. Metab Eng 2003;5:277-283.
[PubMed]
22.
Li K, Mikola MR, Draths KM, Worden RM, Frost JW: Fed-batch fermentor synthesis of 3-dehydroshikimic acid using recombinant Escherichia coli. Biotechnol Bioeng 1999;64:61-73.
[PubMed]
23.
Martinez A, Ramírez OT, Valle F: Improvement of culture conditions to overproduce β-galactosidase from Escherichia coli in Bacillus subtilis. Appl Microbiol Biotechnol 1997;47:40-45.
[PubMed]
24.
Ogawa T, Mori H, Tomita M, Yoshino M: Inhibitory effect of phosphoenolpyruvate on glycolytic enzymes in Escherichia coli. Res Microbiol 2007;158:159-163.
[PubMed]
25.
Patnaik R, Liao JC: Engineering of Escherichia coli central metabolism for aromatic metabolite production with near theoretical yield. Appl Environ Microbiol 1994;60:3903-3908.
[PubMed]
26.
Patnaik R, Spitzer RG, Liao JC: Pathway engineering for production of aromatics in Escherichia coli: confirmation of stoichiometric analysis by independent modulation of Arog, Tkta, and Pps activities. Biotechnol Bioeng 1995;46:361-370.
[PubMed]
27.
Paulsen IT, Chauvaux S, Choi P, Saier MH: Characterization of glucose-specific catabolite repression-resistant mutants of Bacillus subtilis: identification of a novel hexose:H+ symporter. J Bacteriol 1998;180:498-504.
[PubMed]
28.
Reizer J, Bachem S, Reizer A, Arnaud M, Saier MH Jr, Stulke J: Novel phosphotransferase system genes revealed by genome analysis - the complete complement of PTS proteins encoded within the genome of Bacillus subtilis. Microbiology 1999;145:3419-3429.
[PubMed]
29.
Sambrook J, Russell D: Molecular Cloning: A Laboratory Manual. New York, Cold Spring Harbor Laboratory Press, 2001.
30.
Sauer U, Eikmanns BJ: The PEP-pyruvate-oxaloacetate node as the switch point for carbon flux distribution in bacteria. FEMS Microbiol Rev 2005;29:765-794.
[PubMed]
31.
Schallmey M, Singh A, Ward OP: Developments in the use of Bacillus species for industrial production. Can J Microbiol 2004;50:1-17.
[PubMed]
32.
Sprenger G: Aromatic amino acids: amino acid biosynthesis pathways, regulation and metabolic engineering; in Microbiology Monographs. Berlin, Springer 2007, vol 5, pp 93-127.
33.
Whipp MJ, Camakaris H, Pittard AJ: Cloning and analysis of the shiA gene, which encodes the shikimate transport system of Escherichia coli K-12. Gene 1998;209:185-192.
[PubMed]
34.
Yi J, Draths KM, Li K, Frost JW: Altered glucose transport and shikimate pathway product yields in E. coli. Biotechnol Prog 2003;19:1450-1459.
[PubMed]
35.
Zhu T, Pan Z, Domagalski N, Koepsel R, Ataai MM, Domach MM: Engineering of Bacillus subtilis for enhanced total synthesis of folic acid. Appl Environ Microbiol 2005;71:7122-7129.
[PubMed]
36.
Zhu T, Phalakornkule C, Koepsel RR, Domach MM, Ataai MM: Cell growth and by-product formation in a pyruvate kinase mutant of E. coli. Biotechnol Prog 2001;17:624-628.
[PubMed]
You do not currently have access to this content.