Insecticidal activity of Bacillus thuringiensis is attributed largely to the crystal proteins. These were found with specific toxic activity against insects in different orders. A novel cry8 gene from B. thuringiensis strain INTA Fr7-4 from Argentina was characterized. The encoded protein, Cry8Qa2, is 1184 amino acids long and its sequence is more similar to those of Cry8F class. We cloned and expressed the protein in an acrystalliferous strain of B. thuringiensis using two differentially regulated promoters. The recombinant strains produced ovoid crystals with low toxicity against larvae of Anticarsia gemmatalis (Lepidoptera: Noctuidae). The morphology and insecticidal properties of these crystals resembled those produced by the native strain INTA Fr7-4.

1.
Abbott W: A method for computing the effectiveness of an insecticide. J Econ Entomol 1925;18:265-267.
[PubMed]
2.
Adams LF, Visick JE, Whiteley HR: A 20-kilodalton protein is required for efficient production of the Bacillus thuringiensis subsp. israelensis 27-kilodalton crystal protein in Escherichia coli. J Bacteriol 1989;17:521-530.
[PubMed]
3.
Amadio AF, Benintende GB, Zandomeni RO: Complete sequence of three plasmids from Bacillus thuringiensis INTA Fr7-4 environmental isolate and comparison with related plasmids from the Bacillus cereus group. Plasmid 2009;62:172-182.
[PubMed]
4.
Asano S, Yamashita C, Iizuka T, Takeuchi K, Yamanaka S, Cerf D, Yamamoto T: A strain of Bacillus thuringiensis sub. galleriae containing a novel cry8 gene highly toxic to Anomala cuprea (Coleoptera: Scarabaeidae). Biol Control 2003;28:191-196.
5.
Benintende G, Cozzi J: Actividad insecticida de distintas fracciones de cultivos líquidos de Bacillus moritai (Aizawa y Fujiyoshi) en Musca domestica L. (Diptera: Muscidae). RIA 1996;27:27-32.
6.
Benintende G, Lopez-Meza J, Cozzi J, Piccinetti C, Ibarra J: Characterization of INTA, a new atypical strain of Bacillus thuringiensis from Argentina. Curr Microbiol 2000;41:396-401.
[PubMed]
7.
Berry C, O'Neil S, Ben-Dov E, Jones AF, Murphy L, Quail MA, Holden MTG, Harris D, Zaritsky A, Parkhill J: Complete sequence and organization of pBtoxis, the toxin-coding plasmid of Bacillus thuringiensis subsp. israelensis. Appl Environ Microbiol 2002;68:5082-5095.
[PubMed]
8.
Bravo A, Sarabia S, López L, Ontiveros H, Abarca C, Ortiz A, Ortiz M, Lina L, Villalobos FJ, Peña G, Nuñez-Valdez ME, Soberón M, Quintero R: Characterization of cry genes in a Mexican Bacillus thuringiensis strain collection. Appl Environ Microbiol 1998;64:4965-4972.
[PubMed]
9.
Crickmore N, Zeigler DR, Schnepf E, Van Rie J, Lereclus D, Baum J, Bravo A, Dean DH: Bacillus thuringiensis toxin nomenclature. 2012. http://www.lifesci.sussex.ac.uk/Home/Neil_Crickmore/Bt/.
10.
De Maagd RA, Bakker P, Staykov N, Dukiandjiev S, Stiekema W, Bosch D: Identification of Bacillus thuringiensis δ-endotoxin Cry1C domain III amino acid residues involved in insect specificity. Appl Environ Microbiol 1999;65:4369-4374.
[PubMed]
11.
Dervyn E, Poncet S, Klier A, Rapoport G: Transcriptional regulation of the cryIVD gene operon from Bacillus thuringiensis subsp. israelensis. J Bacteriol 1995;177:2283-2291.
[PubMed]
12.
Diaz-Mendoza M, Bideshi DK, Federici BA: A 54-kilodalton protein encoded by pBtoxis is required for parasporal body structural integrity in Bacillus thuringiensis subsp. israelensis. J Bacteriol 2012;194:1562-1571.
[PubMed]
13.
Franco-Rivera A, Benintende G, Cozzi J, Baizbal-Aguirre M, Valdez-Alarcon J, Lopez-Meza J: Molecular characterization of Bacillus thuringiensis strains from Argentina. Antoine Van Leeuwenhoek 2004;86:87-92.
[PubMed]
14.
González J, Dulmage H, Carlton B: Correlation between specific plasmids and δ-endotoxin production in Bacillus thuringiensis. Plasmid 1981;5:352-365.
[PubMed]
15.
Greene G, Leppla N, Dickerson W: Velvet caterpillar. A rearing procedure and artificial medium. J Econ Entomol 1976;69:447-448.
16.
Guo S, Ye S, Liu Y, Wei L, Xue J, Wu H, Song F, Zhang J, Wu X, Huang D, Rao Z: Crystal structure of Bacillus thuringiensis Cry8Ea1: an insecticidal toxin toxic to underground pests, the larvae of Holotrichia parallela. J Struct Biol 2009;168:259-266.
[PubMed]
17.
Herrero S, Gonzalez-Cabrera J, Ferre J, Bakker PL, de Maagd RA: Mutations in the Bacillus thuringiensis Cry1Ca toxin demonstrate the role of domains II and III in specificity towards Spodoptera exigua larvae. Biochem J 2004;384:507-513.
[PubMed]
18.
Ibarra J, del Rincón M, Ordúz S, Noriega D, Benintende G, Monnerat R, Regis L, de Oliveira C, Lanz H, Rodriguez M, Sánchez J, Peña G, Bravo A: Diversity of Bacillus thuringiensis strains from Latin America with insecticidal activity against different mosquito species. Appl Environ Microbiol 2003;69:5269-5274.
[PubMed]
19.
Iriarte J, Caballero P: Biología y ecología de Bacillus thuringiensis; in Caballero P, Ferré J: Bioinsecticidas: fundamentos y aplicaciones de Bacillus thuringiensis en el control integrado de plagas. Valencia, Phytoma-España, 2001, pp 15-44.
20.
Jones DT, Taylor WR, Thornton JM: The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 1992;8:275-282.
[PubMed]
21.
Jouzani GS, Abad AP, Seifinejad A, Marzban R, Kariman K, Maleki B: Distribution and diversity of Dipteran-specific cry and cyt genes in native Bacillus thuringiensis strains obtained from different ecosystems of Iran. J Ind Microbiol Biotechnol 2008;35:83-94.
[PubMed]
22.
Juárez-Pérez V, Ferrandis M, Frutos R: PCR-based approach for detection of novel Bacillus thuringiensiscry genes. Appl Environ Microbiol 1997;63:2997-3002.
[PubMed]
23.
Kalendar R, Lee D, Schulman AH: FastPCR software for PCR primer and probe design and repeat search. Genes Genomes Genomics 2009;3:1-14.
24.
Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG: Clustal W and Clustal X version 2.0. Bioinformatics 2007;23:2947-2948.
[PubMed]
25.
Lereclus D, Arantes O, Chaufaux J, Lecadet M: Transformation and expression of a cloned δ-endotoxin gene in Bacillus thuringiensis. FEMS Microbiol Lett 1989;51:211-217.
[PubMed]
26.
Macaluso A, Mettus AM: Efficient transformation of Bacillus thuringiensis requires nonmethylated plasmid DNA. J Bacteriol 1991;173:1353-1356.
[PubMed]
27.
Mahillon J, Lereclus D: Electroporation of Bacillus thuringiensis and Bacillus cereus; in Eynard N, Teissie J (eds): Electro-Transformation of Bacteria. Springer Laboratory Manual. Berlin, Springer, 2000, pp 242-252.
28.
Noguera PA, Ibarra JE: Detection of new cry genes of Bacillus thuringiensis by use of a novel PCR primer system. Appl Environ Microbiol 2010;76:6150-6155.
[PubMed]
29.
Page RDM: TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 1996;12:357-358.
[PubMed]
30.
Porcar M, Juárez-Pérez V: PCR-based identification of Bacillus thuringiensis pesticidal crystal genes. FEMS Microbiol Rev 2003;26:419-432.
[PubMed]
31.
Roh JY, Jae YC, Ming SL, Byung RJ, Yeon HJ: Bacillus thuringiensis as a specific, safe, and effective tool for insect pest control. J Microbiol Biotechnol 2007;17:547-559.
[PubMed]
32.
Saitou N, Nei M: The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406-425.
[PubMed]
33.
Sambrook J, Fritsch E, Maniatis T: Molecular Cloning. A Laboratory Manual. Cold Spring Harbor, Cold Spring Harbor Laboratory Press, 1989.
34.
Sauka D, Basurto-Ríos R, Ibarra J, Benintende G: Characterization of an Argentine isolate of Bacillus thuringiensis similar to the HD-1 strain. Neotrop Entomol 2010a;39:767-773.
[PubMed]
35.
Sauka D, Benintende G: Bacillus thuringiensis: general aspects. An approach to its use in the biological control of lepidopteran insects behaving as agricultural pests. Rev Argent Microbiol 2008;40:124-140.
[PubMed]
36.
Sauka D, Cozzi J, Benintende G: Screening of cry2 genes in Bacillus thuringiensis isolates from Argentina. Antoine Van Leeuwenhoek 2005;88:163-165.
[PubMed]
37.
Sauka D, Monella R, Benintende G: Detection of the mosquitocidal toxin genes encoding Cry11 proteins from Bacillus thuringiensis using a novel PCR-RFLP method. Rev Argent Microbiol 2010b;42:23-26.
[PubMed]
38.
Schnepf E, Crickmore N, Van Rie J, Lereclus D, Baum J, Feitelson J, Zeigler DR, Dean DH: Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev 1998;62:775-806.
[PubMed]
39.
Shu C, Yu H, Wang R, Fen S, Su X, Huang D, Zhang J, Song F: Characterization of two novel cry8 genes from Bacillus thuringiensis strain BT185. Curr Microbiol 2009;58:389-392.
[PubMed]
40.
Staden R, Beal KF, Bonfield JK: The Staden package, 1998. Methods Mol Biol 1999;132:115-130.
[PubMed]
41.
Uribe D, Martínez W, Cerón J: Distribution and diversity of cry genes in native strains of Bacillus thuringiensis obtained from different ecosystems from Colombia. J Invertebr Pathol 2003;82:119-127.
[PubMed]
42.
Van Frankenhuyzen K, Nystrom C: The Bacillus thuringiensis toxin specificity database. 2002. http://www.glfc.cfs.nrcan.gc.ca/bacillus.
43.
Visick JE, Whiteley HR: Effects of a 20-kilodalton protein from Bacillus thuringiensis subsp. israelensis on production of CytA protein by Escherichia coli. J Bacteriol 1991;173:1748-1756.
[PubMed]
44.
Wasano N, Ohba M: Assignment of the δ-endotoxin genes of the four Lepidoptera-specific Bacillus thuringiensis strains that produce spherical parasporal inclusions. Curr Microbiol 1998;37:408-411.
[PubMed]
45.
Zaritsky A, Ben-Dov E, Borovsky D, Boussiba S, Einav M, Gindin G, Horowitz AR, Kolot M, Melnikov O, Mendel Z, Yagil E: Transgenic organisms expressing genes from Bacillus thuringiensis to combat insect pests. Bioeng Bugs 2010;1:341-344.
[PubMed]
You do not currently have access to this content.