Cellulose, a primary component of lignocellulosic biomass, is the most abundant carbohydrate polymer in nature. Only a limited number of microorganisms are known to degrade cellulose, which is highly recalcitrant due to its crystal structure. Anaerobic bacteria efficiently degrade cellulose by producing cellulosomes, which are complexes of cellulases bound to scaffoldins. The underlying mechanisms that are responsible for the assembly and efficiency of cellulosomes are not yet fully understood. The cohesin-dockerin specificity has been extensively studied to understand cellulosome assembly. Moreover, the recent progress in proteomics has enabled integral analyses of the growth-substrate-dependent variations in cellulosomal systems. Furthermore, the proximity and targeting effects of cellulosomal synergistic actions have been investigated using designed minicellulosomes. The recent findings about cellulosome assembly, strategies for optimal cellulosome production, and beneficial features of cellulosomes as an arming microcompartment on the microbial cell surface are summarized here.

1.
Anonymous: Arming yeast with cell-surface catalysts. Chem Eng News 1997;75:32.
2.
Bayer EA, Morag E, Lamed R: The cellulosome - a treasure-trove for biotechnology. Trends Biotechnol 1994;12:379-386.
[PubMed]
3.
Berger E, Zhang D, Zverlov VV, Schwarz WH: Two noncellulosomal cellulases of Clostridium thermocellum, Cel9I and Cel48Y, hydrolyse crystalline cellulose synergistically. FEMS Microbiol Lett 2007;268:194-201.
[PubMed]
4.
Bras JL, Cartmell A, Carvalho AL, Verze G, Bayer EA, Vazana Y, Correia MA, Prates JA, Ratnaparkhe S, Boraston AB, Romao MJ, Fontes CM, Gilbert HJ: Structural insights into a unique cellulase fold and mechanism of cellulose hydrolysis. Proc Natl Acad Sci USA 2011;108:5237-5242.
[PubMed]
5.
Cho W, Jeon SD, Shim HJ, Doi RH, Han SO: Cellulosomic profiling produced by Clostridium cellulovorans during growth on different carbon sources explored by the cohesin marker. J Biotechnol 2010;145:233-239.
[PubMed]
6.
Doi RH, Park JS, Liu CC, Malburg LM, Tamaru Y, Ichiishi A, Ibrahim A: Cellulosome and noncellulosomal cellulases of Clostridium cellulovorans. Extremophiles 1998;2:53-60.
[PubMed]
7.
Domsalla A, Melzig MF: Occurrence and properties of proteases in plant latices. Planta Med 2008;74:699-711.
[PubMed]
8.
Dror TW, Morag E, Rolider A, Bayer EA, Lamed R, Shoham Y: Regulation of the cellulosomal celS(cel48A) gene of Clostridium thermocellum is growth rate dependent. J Bacteriol 2003;185:3042-3048.
[PubMed]
9.
Dror TW, Rolider A, Bayer EA, Lamed R, Shoham Y: Regulation of major cellulosomal endoglucanases of Clostridium thermocellum differs from that of a prominent cellulosomal xylanase. J Bacteriol 2005;187:2261-2266.
[PubMed]
10.
Fendri I, Tardif C, Fierobe HP, Lignon S, Valette O, Pages S, Perret S: The cellulosomes from Clostridium cellulolyticum: identification of new components and synergies between complexes. FEBS J 2009;276:3076-3086.
[PubMed]
11.
Fierobe HP, Bayer EA, Tardif C, Czjzek M, Mechaly A, Belaich A, Lamed R, Shoham Y, Belaich JP: Degradation of cellulose substrates by cellulosome chimeras: substrate targeting versus proximity of enzyme components. J Biol Chem 2002;277:49621-49630.
[PubMed]
12.
Fierobe HP, Mechaly A, Tardif C, Belaich A, Lamed R, Shoham Y, Belaich JP, Bayer EA: Design and production of active cellulosome chimeras: selective incorporation of dockerin-containing enzymes into defined functional complexes. J Biol Chem 2001;276:21257-21261.
[PubMed]
13.
Fierobe HP, Mingardon F, Mechaly A, Belaich A, Rincon MT, Pages S, Lamed R, Tardif C, Belaich JP, Bayer EA: Action of designer cellulosomes on homogeneous versus complex substrates: controlled incorporation of three distinct enzymes into a defined trifunctional scaffoldin. J Biol Chem 2005;280:16325-16334.
[PubMed]
14.
Gilbert HJ: The biochemistry and structural biology of plant cell wall deconstruction. Plant Physiol 2010;153:444-455.
[PubMed]
15.
Gold ND, Martin VJ: Global view of the Clostridium thermocellum cellulosome revealed by quantitative proteomic analysis. J Bacteriol 2007;189:6787-6795.
[PubMed]
16.
Goldstein MA, Takagi M, Hashida S, Shoseyov O, Doi RH, Segel IH: Characterization of the cellulose-binding domain of the Clostridium cellulovorans cellulose-binding protein A. J Bacteriol 1993;175:5762-5768.
[PubMed]
17.
Haimovitz R, Barak Y, Morag E, Voronov-Goldman M, Shoham Y, Lamed R, Bayer EA: Cohesin-dockerin microarray: diverse specificities between two complementary families of interacting protein modules. Proteomics 2008;8:968-979.
[PubMed]
18.
Han SO, Cho HY, Yukawa H, Inui M, Doi RH: Regulation of expression of cellulosomes and noncellulosomal (hemi)cellulolytic enzymes in Clostridium cellulovorans during growth on different carbon sources. J Bacteriol 2004;186:4218-4227.
[PubMed]
19.
Han SO, Yukawa H, Inui M, Doi RH: Regulation of expression of cellulosomal cellulase and hemicellulase genes in Clostridium cellulovorans. J Bacteriol 2003;185:6067-6075.
[PubMed]
20.
Han SO, Yukawa H, Inui M, Doi RH: Effect of carbon source on the cellulosomal subpopulations of Clostridium cellulovorans. Microbiology 2005;151:1491-1497.
[PubMed]
21.
Jeon SD, Lee JE, Kim SJ, Kim SW, Han SO: Analysis of selective, high protein-protein binding interaction of cohesin-dockerin complex using biosensing methods. Biosens Bioelectron 2012;35:382-389.
[PubMed]
22.
Kosugi A, Amano Y, Murashima K, Doi RH: Hydrophilic domains of scaffolding protein CbpA promote glycosyl hydrolase activity and localization of cellulosomes to the cell surface of Clostridium cellulovorans. J Bacteriol 2004;186:6351-6359.
[PubMed]
23.
Krauss J, Zverlov VV, Schwarz WH: In vitro reconstitution of the complete Clostridium thermocellum cellulosome and synergistic activity on crystalline cellulose. Appl Environ Microbiol 2012;78:4301-4307.
[PubMed]
24.
Kuroda K, Ueda M: Cell surface engineering of yeast for applications in white biotechnology. Biotechnol Lett 2011;33:1-9.
[PubMed]
25.
Leibovitz E, Beguin P: A new type of cohesin domain that specifically binds the dockerin domain of the Clostridium thermocellum cellulosome-integrating protein CipA. J Bacteriol 1996;178:3077-3084.
[PubMed]
26.
Lu Y, Zhang YH, Lynd LR: Enzyme-microbe synergy during cellulose hydrolysis by Clostridium thermocellum. Proc Natl Acad Sci USA 2006;103:16165-16169.
[PubMed]
27.
Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS: Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 2002;66:506-577.
[PubMed]
28.
Lytle B, Myers C, Kruus K, Wu JH: Interactions of the CelS binding ligand with various receptor domains of the Clostridium thermocellum cellulosomal scaffolding protein, CipA. J Bacteriol 1996;178:1200-1203.
[PubMed]
29.
Lytle B, Wu JH: Involvement of both dockerin subdomains in assembly of the Clostridium thermocellum cellulosome. J Bacteriol 1998;180:6581-6585.
[PubMed]
30.
Mansfield SD, Mooney C, Saddler JN: Substrate and enzyme characteristics that limit cellulose hydrolysis. Biotechnol Prog 1999;15:804-816.
[PubMed]
31.
Matsuoka S, Yukawa H, Inui M, Doi RH: Synergistic interaction of Clostridium cellulovorans cellulosomal cellulases and HbpA. J Bacteriol 2007;189:7190-7194.
[PubMed]
32.
Mechaly A, Fierobe HP, Belaich A, Belaich JP, Lamed R, Shoham Y, Bayer EA: Cohesin-dockerin interaction in cellulosome assembly: a single hydroxyl group of a dockerin domain distinguishes between nonrecognition and high affinity recognition. J Biol Chem 2001;276:9883-9888.
[PubMed]
33.
Mechaly A, Yaron S, Lamed R, Fierobe HP, Belaich A, Belaich JP, Shoham Y, Bayer EA: Cohesin-dockerin recognition in cellulosome assembly: experiment versus hypothesis. Proteins 2000;39:170-177.
[PubMed]
34.
Meguro H, Morisaka H, Kuroda K, Miyake H, Tamaru Y, Ueda M: Putative role of cellulosomal protease inhibitors in Clostridium cellulovorans based on gene expression and measurement of activities. J Bacteriol 2011;193:5527-5530.
[PubMed]
35.
Minakuchi H, Nakanishi K, Soga N, Ishizuka N, Tanaka N: Octadecylsilylated porous silica rods as separation media for reversed-phase liquid chromatography. Anal Chem 1996;68:3498-3501.
[PubMed]
36.
Miyamoto K, Hara T, Kobayashi H, Morisaka H, Tokuda D, Horie K, Koduki K, Makino S, Nunez O, Yang C, Kawabe T, Ikegami T, Takubo H, Ishihama Y, Tanaka N: High-efficiency liquid chromatographic separation utilizing long monolithic silica capillary columns. Anal Chem 2008;80:8741-8750.
[PubMed]
37.
Morais S, Barak Y, Caspi J, Hadar Y, Lamed R, Shoham Y, Wilson DB, Bayer EA: Cellulase-xylanase synergy in designer cellulosomes for enhanced degradation of a complex cellulosic substrate. mBio 2010;1:e00285-10.
[PubMed]
38.
Morisaka H, Kobayashi K, Kirino A, Furuno M, Minakuchi H, Nakanishi K, Ueda M: Performance of wide-pore monolithic silica column in protein separation. J Sep Sci 2009;32:2747-2751.
[PubMed]
39.
Morisaka H, Matsui K, Tatsukami Y, Kuroda K, Miyake H, Tamaru Y, Ueda M: Profile of native cellulosomal proteins of Clostridium cellulovorans adapted to various carbon sources. AMB Express 2012;2:37.
[PubMed]
40.
Murashima K, Kosugi A, Doi RH: Synergistic effects on crystalline cellulose degradation between cellulosomal cellulases from Clostridium cellulovorans. J Bacteriol 2002;184:5088-5095.
[PubMed]
41.
Olson DG, Tripathi SA, Giannone RJ, Lo J, Caiazza NC, Hogsett DA, Hettich RL, Guss AM, Dubrovsky G, Lynd LR: Deletion of the Cel48S cellulase from Clostridium thermocellum. Proc Natl Acad Sci USA 2010;107:17727-17732.
[PubMed]
42.
Pages S, Belaich A, Belaich JP, Morag E, Lamed R, Shoham Y, Bayer EA: Species-specificity of the cohesin-dockerin interaction between Clostridium thermocellum and Clostridium cellulolyticum: prediction of specificity determinants of the dockerin domain. Proteins 1997;29:517-527.
[PubMed]
43.
Pages S, Belaich A, Fierobe HP, Tardif C, Gaudin C, Belaich JP: Sequence analysis of scaffolding protein CipC and ORFXp, a new cohesin-containing protein in Clostridium cellulolyticum: comparison of various cohesin domains and subcellular localization of ORFXp. J Bacteriol 1999;181:1801-1810.
[PubMed]
44.
Perret S, Maamar H, Belaich JP, Tardif C: Use of antisense RNA to modify the composition of cellulosomes produced by Clostridium cellulolyticum. Mol Microbiol 2004;51:599-607.
[PubMed]
45.
Raman B, Pan C, Hurst GB, Rodriguez M Jr, McKeown CK, Lankford PK, Samatova NF, Mielenz JR: Impact of pretreated switchgrass and biomass carbohydrates on Clostridium thermocellum ATCC 27405 cellulosome composition: a quantitative proteomic analysis. PLoS One 2009;4:e5271.
[PubMed]
46.
Rost B: PHD: predicting one-dimensional protein structure by profile-based neural networks. Methods Enzymol 1996;266:525-539.
[PubMed]
47.
Rost B, Sander C: Prediction of protein secondary structure at better than 70% accuracy. J Mol Biol 1993;232:584-599.
[PubMed]
48.
Rost B, Sander C: Combining evolutionary information and neural networks to predict protein secondary structure. Proteins 1994;19:55-72.
[PubMed]
49.
Shoseyov O, Doi RH: Essential 170-kDa subunit for degradation of crystalline cellulose by Clostridium cellulovorans cellulase. Proc Natl Acad Sci USA 1990;87:2192-2195.
[PubMed]
50.
Shoseyov O, Takagi M, Goldstein MA, Doi RH: Primary sequence analysis of Clostridium cellulovorans cellulose binding protein A. Proc Natl Acad Sci USA 1992;89:3483-3487.
[PubMed]
51.
Steenbakkers PJ, Irving JA, Harhangi HR, Swinkels WJ, Akhmanova A, Dijkerman R, Jetten MS, van der Drift C, Whisstock JC, Op den Camp HJ: A serpin in the cellulosome of the anaerobic fungus Piromyces sp. strain E2. Mycol Res 2008;112:999-1006.
[PubMed]
52.
Stevenson DM, Weimer PJ: Expression of 17 genes in Clostridium thermocellum ATCC 27405 during fermentation of cellulose or cellobiose in continuous culture. Appl Environ Microbiol 2005;71:4672-4678.
[PubMed]
53.
Tamaru Y, Karita S, Ibrahim A, Chan H, Doi RH: A large gene cluster for the Clostridium cellulovorans cellulosome. J Bacteriol 2000;182:5906-5910.
[PubMed]
54.
Tamaru Y, Miyake H, Kuroda K, Nakanishi A, Kawade Y, Yamamoto K, Uemura M, Fujita Y, Doi RH, Ueda M: Genome sequence of the cellulosome-producing mesophilic organism Clostridium cellulovorans 743B. J Bacteriol 2010;192:901-902.
[PubMed]
55.
Tamaru Y, Miyake H, Kuroda K, Nakanishi A, Matsushima C, Doi RH, Ueda M: Comparison of the mesophilic cellulosome-producing Clostridium cellulovorans genome with other cellulosome-related clostridial genomes. Microb Biotechnol 2011;4:64-73.
[PubMed]
56.
Tolonen AC, Chilaka AC, Church GM: Targeted gene inactivation in Clostridium phytofermentans shows that cellulose degradation requires the family 9 hydrolase Cphy3367. Mol Microbiol 2009;74:1300-1313.
[PubMed]
57.
Ueda M, Tanaka A: Cell surface engineering of yeast: construction of arming yeast with biocatalyst. J Biosci Bioeng 2000;90:125-136.
[PubMed]
58.
Warren RA: Microbial hydrolysis of polysaccharides. Annu Rev Microbiol 1996;50:183-212.
[PubMed]
59.
Yaron S, Morag E, Bayer EA, Lamed R, Shoham Y: Expression, purification and subunit-binding properties of cohesins 2 and 3 of the Clostridium thermocellum cellulosome. FEBS Lett 1995;360:121-124.
[PubMed]
60.
Zhang YH, Lynd LR: Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol Bioeng 2004;88:797-824.
[PubMed]
61.
Zverlov VV, Kellermann J, Schwarz WH: Functional subgenomics of Clostridium thermocellum cellulosomal genes: identification of the major catalytic components in the extracellular complex and detection of three new enzymes. Proteomics 2005;5:3646-3653.
[PubMed]
62.
Zverlov VV, Klupp M, Krauss J, Schwarz WH: Mutations in the scaffoldin gene, cipA, of Clostridium thermocellum with impaired cellulosome formation and cellulose hydrolysis: insertions of a new transposable element, IS1447, and implications for cellulase synergism on crystalline cellulose. J Bacteriol 2008;190:4321-4327.
[PubMed]
You do not currently have access to this content.