Secretion of effectors across bacterial membranes is usually mediated by large multisubunit complexes. In most cases, the secreted effectors are virulent factors normally associated to pathogenic diseases. The biogenesis of these secretion systems and the transport of the effectors are processes that require energy. This energy could be directly obtained by using the proton motive force, but in most cases the energy associated to these processes is derived from ATP hydrolysis. Here, a description of the machineries involved in generating the energy required for system biogenesis and substrate transport by type II, III and IV secretion systems is provided, with special emphasis on highlighting the structural similarities and evolutionary relationships among the secretion ATPases.

1.
Abdallah AM, Gey van Pittius NC, Champion PA, Cox J, Luirink J, Vandenbroucke-Grauls CM, Appelmelk BJ, Bitter W: Type VII secretion - mycobacteria show the way. Nat Rev Microbiol 2007;5:883-891.
[PubMed]
2.
Abrahams JP, Leslie AG, Lutter R, Walker JE: Structure at 2.8 Å resolution of F1-ATPase from bovine heart mitochondria. Nature 1994;370:621-628.
[PubMed]
3.
Abrusci P, Vergara-Irigaray M, Johnson S, Beeby MD, Hendrixson DR, Roversi P, Friede ME, Deane JE, Jensen GJ, Tang CM, Lea SM: Architecture of the major component of the type III secretion system export apparatus. Nat Struct Mol Biol 2013;20:99-104.
[PubMed]
4.
Akeda Y, Galan JE: Chaperone release and unfolding of substrates in type III secretion. Nature 2005;437:911-915.
[PubMed]
5.
Allaoui A, Sansonetti PJ, Parsot C: MxiJ, a lipoprotein involved in secretion of Shigella Ipa invasins, is homologous to YscJ, a secretion factor of the Yersinia Yop proteins. J Bacteriol 1992;174:7661-7669.
[PubMed]
6.
Alvarez-Martinez CE, Christie PJ: Biological diversity of prokaryotic type IV secretion systems. Microbiol Mol Biol Rev 2009;73:775-808.
[PubMed]
7.
Aly KA, Baron C: The VirB5 protein localizes to the T-pilus tips in Agrobacterium tumefaciens. Microbiology 2007;153:3766-3775.
[PubMed]
8.
Anderson LB, Hertzel AV, Das A: Agrobacterium tumefaciens VirB7 and VirB9 form a disulfide-linked protein complex. Proc Natl Acad Sci USA 1996;93:8889-8894.
[PubMed]
9.
Arechaga I, Pena A, Zunzunegui S, del Carmen Fernandez-Alonso M, Rivas G, de la Cruz F: ATPase activity and oligomeric state of TrwK, the VirB4 homologue of the plasmid R388 type IV secretion system. J Bacteriol 2008;190:5472-5479.
[PubMed]
10.
Batchelor RA, Pearson BM, Friis LM, Guerry P, Wells JM: Nucleotide sequences and comparison of two large conjugative plasmids from different Campylobacter species. Microbiology 2004;150:3507-3517.
[PubMed]
11.
Bayliss R, Harris R, Coutte L, Monier A, Fronzes R, Christie PJ, Driscoll PC, Waksman G: NMR structure of a complex between the VirB9/VirB7 interaction domains of the pKM101 type IV secretion system. Proc Natl Acad Sci USA 2007;104:1673-1678.
[PubMed]
12.
Beijersbergen A, Smith SJ, Hooykaas PJ: Localization and topology of VirB proteins of Agrobacterium tumefaciens. Plasmid 1994;32:212-218.
[PubMed]
13.
Bitter W: Secretins of Pseudomonas aeruginosa: large holes in the outer membrane. Arch Microbiol 2003;179:307-314.
[PubMed]
14.
Bitter W, Koster M, Latijnhouwers M, de Cock H, Tommassen J: Formation of oligomeric rings by XcpQ and PilQ, which are involved in protein transport across the outer membrane of Pseudomonas aeruginosa. Mol Microbiol 1998;27:209-219.
[PubMed]
15.
Bleves S, Voulhoux R, Michel G, Lazdunski A, Tommassen J, Filloux A: The secretion apparatus of Pseudomonas aeruginosa: identification of a fifth pseudopilin, XcpX (GspK family). Mol Microbiol 1998;27:31-40.
[PubMed]
16.
Broz P, Mueller CA, Muller SA, Philippsen A, Sorg I, Engel A, Cornelis GR: Function and molecular architecture of the Yersinia injectisome tip complex. Mol Microbiol 2007;65:1311-1320.
[PubMed]
17.
Burghout P, Beckers F, de Wit E, van Boxtel R, Cornelis GR, Tommassen J, Koster M: Role of the pilot protein YscW in the biogenesis of the YscC secretin in Yersinia enterocolitica. J Bacteriol 2004a;186:5366-5375.
[PubMed]
18.
Burghout P, van Boxtel R, Van Gelder P, Ringler P, Muller SA, Tommassen J, Koster M: Structure and electrophysiological properties of the YscC secretin from the type III secretion system of Yersinia enterocolitica. J Bacteriol 2004b;186:4645-4654.
[PubMed]
19.
Burns DL: Type IV transporters of pathogenic bacteria. Curr Opin Microbiol 2003;6:29-34.
[PubMed]
20.
Cabezón E, Lanza VF, Arechaga I: Membrane-associated nanomotors for macromolecular transport. Curr Opin Biotechnol 2012;23:537-544.
[PubMed]
21.
Cabezón E, Sastre JI, de la Cruz F: Genetic evidence of a coupling role for the TraG protein family in bacterial conjugation. Mol Gen Genet 1997;254:400-406.
[PubMed]
22.
Camberg JL, Sandkvist M: Molecular analysis of the Vibrio cholerae type II secretion ATPase EpsE. J Bacteriol 2005;187:249-256.
[PubMed]
23.
Cascales E, Christie PJ: Agrobacterium VirB10, an ATP energy sensor required for type IV secretion. Proc Natl Acad Sci USA 2004;101:17228-17233.
[PubMed]
24.
Chandran V, Fronzes R, Duquerroy S, Cronin N, Navaza J, Waksman G: Structure of the outer membrane complex of a type IV secretion system. Nature 2009;462:1011-1015.
[PubMed]
25.
Christie PJ, Atmakuri K, Krishnamoorthy V, Jakubowski S, Cascales E: Biogenesis, architecture, and function of bacterial type IV secretion systems. Annu Rev Microbiol 2005;59:451-485.
[PubMed]
26.
Cianciotto NP: Type II secretion: a protein secretion system for all seasons. Trends Microbiol 2005;13:581-588.
[PubMed]
27.
Collins RF, Davidsen L, Derrick JP, Ford RC, Tonjum T: Analysis of the PilQ secretin from Neisseria meningitidis by transmission electron microscopy reveals a dodecameric quaternary structure. J Bacteriol 2001;183:3825-3832.
[PubMed]
28.
Cordes FS, Komoriya K, Larquet E, Yang S, Egelman EH, Blocker A, Lea SM: Helical structure of the needle of the type III secretion system of Shigella flexneri. J Biol Chem 2003;278:17103-17107.
[PubMed]
29.
Cornelis GR: The type III secretion injectisome. Nat Rev Microbiol 2006;4:811-825.
[PubMed]
30.
Crago AM, Koronakis V: Salmonella InvG forms a ring-like multimer that requires the InvH lipoprotein for outer membrane localization. Mol Microbiol 1998;30:47-56.
[PubMed]
31.
Deane JE, Abrusci P, Johnson S, Lea SM: Timing is everything: the regulation of type III secretion. Cell Mol Life Sci 2010;67:1065-1075.
[PubMed]
32.
Deane JE, Graham SC, Mitchell EP, Flot D, Johnson S, Lea SM: Crystal structure of Spa40, the specificity switch for the Shigella flexneri type III secretion system. Mol Microbiol 2008;69:267-276.
[PubMed]
33.
Deane JE, Roversi P, Cordes FS, Johnson S, Kenjale R, Daniell S, Booy F, Picking WD, Picking WL, Blocker AJ, Lea SM: Molecular model of a type III secretion system needle: implications for host-cell sensing. Proc Natl Acad Sci USA 2006;103:12529-23633.
[PubMed]
34.
Dehio C: Molecular and cellular basis of Bartonella pathogenesis. Annu Rev Microbiol 2004;58:365-390.
[PubMed]
35.
Derewenda U, Mateja A, Devedjiev Y, Routzahn KM, Evdokimov AG, Derewenda ZS, Waugh DS: The structure of Yersiniapestis V-antigen, an essential virulence factor and mediator of immunity against plague. Structure 2004;12:301-306.
[PubMed]
36.
Diepold A, Amstutz M, Abel S, Sorg I, Jenal U, Cornelis GR: Deciphering the assembly of the Yersinia type III secretion injectisome. EMBO J 2010;29:1928-1940.
[PubMed]
37.
du Plessis DJ, Nouwen N, Driessen AJ: The Sec translocase. Biochim Biophys Acta 2011;1808:851-865.
[PubMed]
38.
Durand E, Bernadac A, Ball G, Lazdunski A, Sturgis JN, Filloux A: Type II protein secretion in Pseudomonas aeruginosa: the pseudopilus is a multifibrillar and adhesive structure. J Bacteriol 2003;185:2749-2758.
[PubMed]
39.
Durand E, Oomen C, Waksman G: Biochemical dissection of the ATPase TraB, the VirB4 homologue of the Escherichia coli pKM101 conjugation machinery. J Bacteriol 2010;192:2315-2323.
[PubMed]
40.
Eisenbrandt R, Kalkum M, Lai EM, Lurz R, Kado CI, Lanka E: Conjugative pili of IncP plasmids, and the Ti plasmid T pilus are composed of cyclic subunits. J Biol Chem 1999;274:22548-22555.
[PubMed]
41.
Eisenbrandt R, Kalkum M, Lurz R, Lanka E: Maturation of IncP pilin precursors resembles the catalytic Dyad-like mechanism of leader peptidases. J Bacteriol 2000;182:6751-6761.
[PubMed]
42.
Erskine PT, Knight MJ, Ruaux A, Mikolajek H, Wong Fat Sang N, Withers J, Gill R, Wood SP, Wood M, Fox GC, Cooper JB: High resolution structure of BipD: an invasion protein associated with the type III secretion system of Burkholderia pseudomallei. J Mol Biol 2006;363:125-136.
[PubMed]
43.
Fan F, Macnab RM: Enzymatic characterization of FliI: an ATPase involved in flagellar assembly in Salmonella typhimurium. J Biol Chem 1996;271:31981-31988.
[PubMed]
44.
Faudry E, Vernier G, Neumann E, Forge V, Attree I: Synergistic pore formation by type III toxin translocators of Pseudomonas aeruginosa. Biochemistry 2006;45:8117-8123.
[PubMed]
45.
Fernández-López R, Garcillán-Barcia MP, Revilla C, Lázaro M, Vielva L, de la Cruz F: Dynamics of the IncW genetic backbone imply general trends in conjugative plasmid evolution. FEMS Microbiol Rev 2006;30:942-966.
[PubMed]
46.
Filloux A: The underlying mechanisms of type II protein secretion. Biochim Biophys Acta 2004;1694:163-179.
[PubMed]
47.
Filloux A: Protein secretion systems in Pseudomonas aeruginosa: an essay on diversity, evolution, and function. Front Microbiol 2011;2:155.
[PubMed]
48.
Forest KT, Satyshur KA, Worzalla GA, Hansen JK, Herdendorf TJ: The pilus-retraction protein PilT: ultrastructure of the biological assembly. Acta Crystallogr D Biol Crystallogr 2004;60:978-982.
[PubMed]
49.
Frank AC, Alsmark CM, Thollesson M, Andersson SG: Functional divergence and horizontal transfer of type IV secretion systems. Mol Biol Evol 2005;22:1325-1336.
[PubMed]
50.
Fronzes R, Schafer E, Wang L, Saibil HR, Orlova EV, Waksman G: Structure of a type IV secretion system core complex. Science 2009;323:266-268.
[PubMed]
51.
Galan JE: Common themes in the design and function of bacterial effectors. Cell Host Microbe 2009;5:571-579.
[PubMed]
52.
Galan JE, Wolf-Watz H: Protein delivery into eukaryotic cells by type III secretion machines. Nature 2006;444:567-573.
[PubMed]
53.
Galperin M, Dibrov PA, Glagolev AN: delta mu H+ is required for flagellar growth in Escherichia coli. FEBS Lett 1982;143:319-322.
[PubMed]
54.
Genin S, Boucher CA: A superfamily of proteins involved in different secretion pathways in Gram-negative bacteria: modular structure and specificity of the N-terminal domain. Mol Gen Genet 1994;243:112-118.
[PubMed]
55.
Gold VA, Robson A, Clarke AR, Collinson I: Allosteric regulation of SecA: magnesium-mediated control of conformation and activity. J Biol Chem 2007;282:17424-17432.
[PubMed]
56.
Gomis-Ruth FX, Coll M: Cut and move: protein machinery for DNA processing in bacterial conjugation. Curr Opin Struct Biol 2006;16:744-752.
[PubMed]
57.
Gomis-Ruth FX, Moncalián G, Perez-Luque R, González A, Cabezón E, de la Cruz F, Coll M: The bacterial conjugation protein TrwB resembles ring helicases and F1-ATPase. Nature 2001;409:637-641.
[PubMed]
58.
Gonzalez-Pedrajo B, Minamino T, Kihara M, Namba K: Interactions between C ring proteins and export apparatus components: a possible mechanism for facilitating type III protein export. Mol Microbiol 2006;60:984-998.
[PubMed]
59.
Gophna U, Ron EZ, Graur D: Bacterial type III secretion systems are ancient and evolved by multiple horizontal-transfer events. Gene 2003;312:151-163.
[PubMed]
60.
Guilvout I, Hardie KR, Sauvonnet N, Pugsley AP: Genetic dissection of the outer membrane secretin PulD: are there distinct domains for multimerization and secretion specificity? J Bacteriol 1999;181:7212-7220.
[PubMed]
61.
Hardie KR, Seydel A, Guilvout I, Pugsley AP: The secretin-specific, chaperone-like protein of the general secretory pathway: separation of proteolytic protection and piloting functions. Mol Microbiol 1996;22:967-976.
[PubMed]
62.
Hare S, Bayliss R, Baron C, Waksman G: A large domain swap in the VirB11 ATPase of Brucella suis leaves the hexameric assembly intact. J Mol Biol 2006;360:56-66.
[PubMed]
63.
Hobbs M, Mattick JS: Common components in the assembly of type 4 fimbriae, DNA transfer systems, filamentous phage and protein-secretion apparatus: a general system for the formation of surface-associated protein complexes. Mol Microbiol 1993;10:233-243.
[PubMed]
64.
Holland IB: The extraordinary diversity of bacterial protein secretion mechanisms. Methods Mol Biol 2010;619:1-20.
[PubMed]
65.
Ibuki T, Imada K, Minamino T, Kato T, Miyata T, Namba K: Common architecture of the flagellar type III protein export apparatus and F- and V-type ATPases. Nat Struct Mol Biol 2011;18:277-82.
[PubMed]
66.
Ide T, Laarmann S, Greune L, Schillers H, Oberleithner H, Schmidt MA: Characterization of translocation pores inserted into plasma membranes by type III-secreted Esp proteins of enteropathogenic Escherichia coli. Cell Microbiol 2001;3:669-679.
[PubMed]
67.
Imada K, Minamino T, Tahara A, Namba K: Structural similarity between the flagellar type III ATPase FliI and F1-ATPase subunits. Proc Natl Acad Sci USA 2007;104:485-490.
[PubMed]
68.
Iyer LM, Leipe DD, Koonin EV, Aravind L: Evolutionary history and higher order classification of AAA+ ATPases. J Struct Biol 2004;146:11-31.
[PubMed]
69.
Izore T, Job V, Dessen A: Biogenesis, regulation, and targeting of the type III secretion system. Structure 2011;19:603-612.
[PubMed]
70.
Jakovljevic V, Leonardy S, Hoppert M, Sogaard-Andersen L: PilB and PilT are ATPases acting antagonistically in type IV pilus function in Myxococcus xanthus. J Bacteriol 2008;190:2411-2421.
[PubMed]
71.
Jakubowski SJ, Krishnamoorthy V, Cascales E, Christie PJ: Agrobacterium tumefaciens VirB6 domains direct the ordered export of a DNA substrate through a type IV secretion system. J Mol Biol 2004;341:961-977.
[PubMed]
72.
Jakubowski SJ, Krishnamoorthy V, Christie PJ: Agrobacterium tumefaciens VirB6 protein participates in formation of VirB7 and VirB9 complexes required for type IV secretion. J Bacteriol 2003;185:2867-2878.
[PubMed]
73.
Johnson S, Roversi P, Espina M, Olive A, Deane JE, Birket S, Field T, Picking WD, Blocker AJ, Galyov EE, Picking WL, Lea SM: Self-chaperoning of the type III secretion system needle tip proteins IpaD and BipD. J Biol Chem 2007;282:4035-4044.
[PubMed]
74.
Jones AL, Shirasu K, Kado CI: The product of the virB4 gene of Agrobacterium tumefaciens promotes accumulation of VirB3 protein. J Bacteriol 1994;176:5255-5261.
[PubMed]
75.
Kerr JE, Christie PJ: Evidence for VirB4-mediated dislocation of membrane-integrated VirB2 pilin during biogenesis of the Agrobacterium VirB/VirD4 type IV secretion system. J Bacteriol 2010;192:4923-4934.
[PubMed]
76.
Kimbrough TG, Miller SI: Assembly of the type III secretion needle complex of Salmonella typhimurium. Microbes Infect 2002;4:75-82.
[PubMed]
77.
Kubori T, Matsushima Y, Nakamura D, Uralil J, Lara-Tejero M, Sukhan A, Galan JE, Aizawa SI: Supramolecular structure of the Salmonella typhimurium type III protein secretion system. Science 1998;280:602-605.
[PubMed]
78.
Kubori T, Sukhan A, Aizawa SI, Galan JE: Molecular characterization and assembly of the needle complex of the Salmonella typhimurium type III protein secretion system. Proc Natl Acad Sci USA 2000;97:10225-10230.
[PubMed]
79.
Kumar RB, Das A: Functional analysis of the Agrobacterium tumefaciens T-DNA transport pore protein VirB8. J Bacteriol 2001;183:3636-3641.
[PubMed]
80.
Lai EM, Eisenbrandt R, Kalkum M, Lanka E, Kado CI: Biogenesis of T pili in Agrobacterium tumefaciens requires precise VirB2 propilin cleavage and cyclization. J Bacteriol 2002;184:327-330.
[PubMed]
81.
Lario PI, Pfuetzner RA, Frey EA, Creagh L, Haynes C, Maurelli AT, Strynadka NC: Structure and biochemical analysis of a secretin pilot protein. EMBO J 2005;24:1111-1121.
[PubMed]
82.
Leiman PG, Basler M, Ramagopal UA, Bonanno JB, Sauder JM, Pukatzki S, Burley SK, Almo SC, Mekalanos JJ: Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin. Proc Natl Acad Sci USA 2009;106:4154-4159.
[PubMed]
83.
Li F, Alvarez-Martinez C, Chen Y, Choi KJ, Yeo HJ, Christie PJ: Enterococcus faecalis PrgJ, a VirB4-like ATPase, mediates pCF10 conjugative transfer through substrate binding. J Bacteriol 2012;194:4041-4051.
[PubMed]
84.
Linderoth NA, Simon MN, Russel M: The filamentous phage pIV multimer visualized by scanning transmission electron microscopy. Science 1997;278:1635-1638.
[PubMed]
85.
Llosa M, Gomis-Ruth FX, Coll M, de la Cruz Fd F: Bacterial conjugation: a two-step mechanism for DNA transport. Mol Microbiol 2002;45:1-8.
[PubMed]
86.
Llosa M, Zunzunegui S, de la Cruz F: Conjugative coupling proteins interact with cognate and heterologous VirB10-like proteins while exhibiting specificity for cognate relaxosomes. Proc Natl Acad Sci USA 2003;100:10465-10470.
[PubMed]
87.
Macnab RM: Type III flagellar protein export and flagellar assembly. Biochim Biophys Acta 2004;1694:207-217.
[PubMed]
88.
Majdalani N, Ippen-Ihler K: Membrane insertion of the F-pilin subunit is Sec independent but requires leader peptidase B and the proton motive force. J Bacteriol 1996;178:3742-3747.
[PubMed]
89.
Marlovits TC, Kubori T, Sukhan A, Thomas DR, Galan JE, Unger VM: Structural insights into the assembly of the type III secretion needle complex. Science 2004;306:1040-1042.
[PubMed]
90.
Marlovits TC, Stebbins CE: Type III secretion systems shape up as they ship out. Curr Opin Microbiol 2010;13:47-52.
[PubMed]
91.
Martin PR, Hobbs M, Free PD, Jeske Y, Mattick JS: Characterization of pilQ, a new gene required for the biogenesis of type 4 fimbriae in Pseudomonas aeruginosa. Mol Microbiol 1993;9:857-868.
[PubMed]
92.
Mattick JS: Type IV pili and twitching motility. Annu Rev Microbiol 2002;56:289-314.
[PubMed]
93.
Middleton R, Sjolander K, Krishnamurthy N, Foley J, Zambryski P: Predicted hexameric structure of the Agrobacterium VirB4 C terminus suggests VirB4 acts as a docking site during type IV secretion. Proc Natl Acad Sci USA 2005;102:1685-1690.
[PubMed]
94.
Moore D, Hamilton CM, Maneewannakul K, Mintz Y, Frost LS, Ippen-Ihler K: The Escherichia coli K-12 F plasmid gene traX is required for acetylation of F pilin. J Bacteriol 1993;175:1375-1383.
[PubMed]
95.
Mueller CA, Broz P, Cornelis GR: The type III secretion system tip complex and translocon. Mol Microbiol 2008;68:1085-1095.
[PubMed]
96.
Mulkidjanian AY, Makarova KS, Galperin MY, Koonin EV: Inventing the dynamo machine: the evolution of the F-type and V-type ATPases. Nat Rev Microbiol 2007;5:892-899.
[PubMed]
97.
Noji H, Yasuda R, Yoshida M, Kinosita K Jr: Direct observation of the rotation of F1-ATPase. Nature 1997;386:299-302.
[PubMed]
98.
Nunn D: Bacterial type II protein export and pilus biogenesis: more than just homologies? Trends Cell Biol 1999;9:402-408.
[PubMed]
99.
Nunn DN, Lory S: Product of the Pseudomonas aeruginosa gene pilD is a prepilin leader peptidase. Proc Natl Acad Sci USA 1991;88:3281-3285.
[PubMed]
100.
Okon M, Moraes TF, Lario PI, Creagh AL, Haynes CA, Strynadka NC, McIntosh LP: Structural characterization of the type-III pilot-secretin complex from Shigella flexneri. Structure 2008;16:1544-1554.
[PubMed]
101.
Pallen MJ, Bailey CM, Beatson SA: Evolutionary links between FliH/YscL-like proteins from bacterial type III secretion systems and second-stalk components of the FoF1 and vacuolar ATPases. Protein Sci 2006;15:935-941.
[PubMed]
102.
Pallen MJ, Chaudhuri RR, Henderson IR: Genomic analysis of secretion systems. Curr Opin Microbiol 2003;6:519-527.
[PubMed]
103.
Paul K, Erhardt M, Hirano T, Blair DF, Hughes KT: Energy source of flagellar type III secretion. Nature 2008;451:489-492.
[PubMed]
104.
Peabody CR, Chung YJ, Yen MR, Vidal-Ingigliardi D, Pugsley AP, Saier MH Jr: Type II protein secretion and its relationship to bacterial type IV pili and archaeal flagella. Microbiology 2003;149:3051-3072.
[PubMed]
105.
Pell LG, Kanelis V, Donaldson LW, Howell PL, Davidson AR: The phage lambda major tail protein structure reveals a common evolution for long-tailed phages and the type VI bacterial secretion system. Proc Natl Acad Sci USA 2009;106:4160-4165.
[PubMed]
106.
Peña A, Matilla I, Martin-Benito J, Valpuesta JM, Carrascosa JL, de la Cruz F, Cabezon E, Arechaga I: The hexameric structure of a conjugative VirB4 protein ATPase provides new insights for a functional and phylogenetic relationship with DNA translocases. J Biol Chem 2012;287:39925-39932.
[PubMed]
107.
Peña A, Ripoll-Rozada J, Zunzunegui S, Cabezón E, de la Cruz F, Arechaga I: Autoinhibitory regulation of TrwK, an essential VirB4 ATPase in type IV secretion systems. J Biol Chem 2011;286:17376-17382.
[PubMed]
108.
Planet PJ, Kachlany SC, DeSalle R, Figurski DH: Phylogeny of genes for secretion NTPases: identification of the widespread tadA subfamily and development of a diagnostic key for gene classification. Proc Natl Acad Sci USA 2001;98:2503-2508.
[PubMed]
109.
Poquet I, Faucher D, Pugsley AP: Stable periplasmic secretion intermediate in the general secretory pathway of Escherichia coli. EMBO J 1993;12:271-278.
[PubMed]
110.
Possot O, Pugsley AP: Molecular characterization of PulE, a protein required for pullulanase secretion. Mol Microbiol 1994;12:287-299.
[PubMed]
111.
Poyraz O, Schmidt H, Seidel K, Delissen F, Ader C, Tenenboim H, Goosmann C, Laube B, Thunemann AF, Zychlinsky A, Baldus M, Lange A, Griesinger C, Kolbe M: Protein refolding is required for assembly of the type three secretion needle. Nat Struct Mol Biol 2010;17:788-792.
[PubMed]
112.
Pugsley AP, Dupuy B: An enzyme with type IV prepilin peptidase activity is required to process components of the general extracellular protein secretion pathway of Klebsiella oxytoca. Mol Microbiol 1992;6:751-760.
[PubMed]
113.
Pugsley AP, Kornacker MG, Poquet I: The general protein-export pathway is directly required for extracellular pullulanase secretion in Escherichia coli K12. Mol Microbiol 1991;5:343-352.
[PubMed]
114.
Py B, Loiseau L, Barras F: An inner membrane platform in the type II secretion machinery of Gram-negative bacteria. EMBO Rep 2001;2:244-248.
[PubMed]
115.
Rabel C, Grahn AM, Lurz R, Lanka E: The VirB4 family of proposed traffic nucleoside triphosphatases: common motifs in plasmid RP4 TrbE are essential for conjugation and phage adsorption. J Bacteriol 2003;185:1045-1058.
[PubMed]
116.
Ripoll-Rozada J, Pena A, Rivas S, Moro F, de la Cruz F, Cabezon E, Arechaga I: Regulation of the type IV secretion ATPase TrwD by magnesium: implications for catalytic mechanism of the secretion ATPase superfamily. J Biol Chem 2012;287:17408-17414.
[PubMed]
117.
Rivas S, Bolland S, Cabezon E, Goni FM, de la Cruz F: TrwD, a protein encoded by the IncW plasmid R388, displays an ATP hydrolase activity essential for bacterial conjugation. J Biol Chem 1997;272:25583-25590.
[PubMed]
118.
Robien MA, Krumm BE, Sandkvist M, Hol WG: Crystal structure of the extracellular protein secretion NTPase EpsE of Vibrio cholerae. J Mol Biol 2003;333:657-674.
[PubMed]
119.
Saier MH Jr: Evolution of bacterial type III protein secretion systems. Trends Microbiol 2004;12:113-115.
[PubMed]
120.
Saier MH Jr: Protein secretion and membrane insertion systems in Gram-negative bacteria. J Membr Biol 2006;214:75-90.
[PubMed]
121.
Saijo-Hamano Y, Imada K, Minamino T, Kihara M, Shimada M, Kitao A, Namba K: Structure of the cytoplasmic domain of FlhA and implication for flagellar type III protein export. Mol Microbiol 2010;76:260-268.
[PubMed]
122.
Sandkvist M: Type II secretion and pathogenesis. Infect Immun 2001;69:3523-3535.
[PubMed]
123.
Sandkvist M, Bagdasarian M, Howard SP, DiRita VJ: Interaction between the autokinase EpsE and EpsL in the cytoplasmic membrane is required for extracellular secretion in Vibrio cholerae. EMBO J 1995;14:1664-1673.
[PubMed]
124.
Satyshur KA, Worzalla GA, Meyer LS, Heiniger EK, Aukema KG, Misic AM, Forest KT: Crystal structures of the pilus retraction motor PilT suggest large domain movements and subunit cooperation drive motility. Structure 2007;15:363-376.
[PubMed]
125.
Savvides SN, Yeo HJ, Beck MR, Blaesing F, Lurz R, Lanka E, Buhrdorf R, Fischer W, Haas R, Waksman G: VirB11 ATPases are dynamic hexameric assemblies: new insights into bacterial type IV secretion. EMBO J 2003;22:1969-1980.
[PubMed]
126.
Schraidt O, Lefebre MD, Brunner MJ, Schmied WH, Schmidt A, Radics J, Mechtler K, Galan JE, Marlovits TC: Topology and organization of the Salmonella typhimurium type III secretion needle complex components. PLoS Pathog 2010;6:e1000824.
[PubMed]
127.
Silverman JM, Brunet YR, Cascales E, Mougous JD: Structure and regulation of the type VI secretion system. Annu Rev Microbiol 2012;66:453-472.
[PubMed]
128.
Sorg I, Wagner S, Amstutz M, Muller SA, Broz P, Lussi Y, Engel A, Cornelis GR: YscU recognizes translocators as export substrates of the Yersinia injectisome. EMBO J 2007;26:3015-3024.
[PubMed]
129.
Spreter T, Yip CK, Sanowar S, Andre I, Kimbrough TG, Vuckovic M, Pfuetzner RA, Deng W, Yu AC, Finlay BB, Baker D, Miller SI, Strynadka NC: A conserved structural motif mediates formation of the periplasmic rings in the type III secretion system. Nat Struct Mol Biol 2009;16:468-476.
[PubMed]
130.
Spudich GM, Fernandez D, Zhou XR, Christie PJ: Intermolecular disulfide bonds stabilize VirB7 homodimers and VirB7/VirB9 heterodimers during biogenesis of the Agrobacterium tumefaciens T-complex transport apparatus. Proc Natl Acad Sci USA 1996;93:7512-7517.
[PubMed]
131.
Stebbins CE, Galan JE: Structural mimicry in bacterial virulence. Nature 2001;412:701-705.
[PubMed]
132.
Sun P, Tropea JE, Austin BP, Cherry S, Waugh DS: Structural characterization of the Yersinia pestis type III secretion system needle protein YscF in complex with its heterodimeric chaperone YscE/YscG. J Mol Biol 2008;377:819-830.
[PubMed]
133.
Tato I, Zunzunegui S, de la Cruz F, Cabezon E: TrwB, the coupling protein involved in DNA transport during bacterial conjugation, is a DNA-dependent ATPase. Proc Natl Acad Sci USA 2005;102:8156-8161.
[PubMed]
134.
Terradot L, Bayliss R, Oomen C, Leonard GA, Baron C, Waksman G: Structures of two core subunits of the bacterial type IV secretion system, VirB8 from Brucella suis and ComB10 from Helicobacter pylori. Proc Natl Acad Sci USA 2005;102:4596-4601.
[PubMed]
135.
Thanassi DG, Saulino ET, Hultgren SJ: The chaperone/usher pathway: a major terminal branch of the general secretory pathway. Curr Opin Microbiol 1998;1:223-231.
[PubMed]
136.
Vogler AP, Homma M, Irikura VM, Macnab RM: Salmonella typhimurium mutants defective in flagellar filament regrowth and sequence similarity of FliI to F0F1, vacuolar, and archaebacterial ATPase subunits. J Bacteriol 1991;173:3564-3572.
[PubMed]
137.
Voulhoux R, Ball G, Ize B, Vasil ML, Lazdunski A, Wu LF, Filloux A: Involvement of the twin-arginine translocation system in protein secretion via the type II pathway. EMBO J 2001;20:6735-6741.
[PubMed]
138.
Waksman G, Fronzes R: Molecular architecture of bacterial type IV secretion systems. Trends Biochem Sci 2010;35:691-698.
[PubMed]
139.
Waksman G, Hultgren SJ: Structural biology of the chaperone-usher pathway of pilus biogenesis. Nat Rev Microbiol 2009;7:765-774.
[PubMed]
140.
Wallden K, Williams R, Yan J, Lian PW, Wang L, Thalassinos K, Orlova EV, Waksman G: Structure of the VirB4 ATPase, alone and bound to the core complex of a type IV secretion system. Proc Natl Acad Sci USA 2012;109:11348-11353.
[PubMed]
141.
Waters VL: Conjugative transfer in the dissemination of β-lactam and aminoglycoside resistance. Front Biosci 1999;4:D433-D456.
[PubMed]
142.
Wiesand U, Sorg I, Amstutz M, Wagner S, van den Heuvel J, Luhrs T, Cornelis GR, Heinz DW: Structure of the type III secretion recognition protein YscU from Yersinia enterocolitica. J Mol Biol 2009;385:854-866.
[PubMed]
143.
Wilharm G, Lehmann V, Krauss K, Lehnert B, Richter S, Ruckdeschel K, Heesemann J, Trulzsch K: Yersinia enterocolitica type III secretion depends on the proton motive force but not on the flagellar motor components MotA and MotB. Infect Immun 2004;72:4004-4009.
[PubMed]
144.
Worrall LJ, Lameignere E, Strynadka NC: Structural overview of the bacterial injectisome. Curr Opin Microbiol 2011;14:3-8.
[PubMed]
145.
Worrall LJ, Vuckovic M, Strynadka NC: Crystal structure of the C-terminal domain of the Salmonella type III secretion system export apparatus protein InvA. Protein Sci 2010;19:1091-1096.
[PubMed]
146.
Yamagata A, Tainer JA: Hexameric structures of the archaeal secretion ATPase GspE and implications for a universal secretion mechanism. EMBO J 2007;26:878-890.
[PubMed]
147.
Yeo HJ, Savvides SN, Herr AB, Lanka E, Waksman G: Crystal structure of the hexameric traffic ATPase of the Helicobacter pylori type IV secretion system. Mol Cell 2000;6:1461-1472.
[PubMed]
148.
Yeo HJ, Yuan Q, Beck MR, Baron C, Waksman G: Structural and functional characterization of the VirB5 protein from the type IV secretion system encoded by the conjugative plasmid pKM101. Proc Natl Acad Sci USA 2003;100:15947-15952.
[PubMed]
149.
Yip CK, Kimbrough TG, Felise HB, Vuckovic M, Thomas NA, Pfuetzner RA, Frey EA, Finlay BB, Miller SI, Strynadka NC: Structural characterization of the molecular platform for type III secretion system assembly. Nature 2005;435:702-707.
[PubMed]
150.
Zarivach R, Deng W, Vuckovic M, Felise HB, Nguyen HV, Miller SI, Finlay BB, Strynadka NC: Structural analysis of the essential self-cleaving type III secretion proteins EscU and SpaS. Nature 2008;453:124-127.
[PubMed]
151.
Zarivach R, Vuckovic M, Deng W, Finlay BB, Strynadka NC: Structural analysis of a prototypical ATPase from the type III secretion system. Nat Struct Mol Biol 2007;14:131-137.
[PubMed]
152.
Zechner EL, Lang S, Schildbach JF: Assembly and mechanisms of bacterial type IV secretion machines. Philos Trans R Soc Lond B Biol Sci 2012;367:1073-1087.
[PubMed]
You do not currently have access to this content.