Bacterial microcompartments are large proteinaceous structures that act as metabolic organelles in many bacterial cells. A shell or capsid, which is composed of a few thousand protein subunits, surrounds a series of sequentially acting enzymes and controls the diffusion of substrates and products into and out of the lumen. The carboxysome and the propanediol utilization microcompartment represent two well-studied systems among seven or more distinct types that can be delineated presently. Recent structural studies have highlighted a number of sophisticated mechanisms that underlie the function of bacterial microcompartment shell proteins. This review updates our understanding of bacterial microcompartment shells, how they are assembled, and how they carry out their functions in molecular transport and enzyme organization.

1.
Bobik TA: Polyhedral organelles compartmenting bacterial metabolic processes. Appl Microbiol Biotechnol 2006;70:517-525.
[PubMed]
2.
Bobik TA, Havemann GD, Busch RJ, Williams DS, Aldrich HC: The propanediol utilization (pdu) operon of Salmonella enterica serovar typhimurium LT2 includes genes necessary for formation of polyhedral organelles involved in coenzyme B12-dependent 1,2-propanediol degradation. J Bacteriol 1999;181:5967-5975.
[PubMed]
3.
Cai F, Menon BB, Cannon GC, Curry KJ, Shively JM, Heinhorst S: The pentameric vertex proteins are necessary for the icosahedral carboxysome shell to function as a CO2 leakage barrier. PLoS One 2009;4:e7521.
[PubMed]
4.
Cai F, Sutter M, Cameron JC, Stanley DN, Kinney JN, Kerfeld CA: The structure of CcmP: a tandem bacterial microcompartment-domain protein from the β-carboxysome forms a subcompartment within a microcompartment. J Biol Chem 2013, E-pub ahead of print.
[PubMed]
5.
Cannon GC, Bradburne CE, Aldrich HC, Baker SH, Heinhorst S, Shively JM: Microcompartments in prokaryotes: carboxysomes and related polyhedra. Appl Environ Microbiol 2001;67:5351-5361.
[PubMed]
6.
Cannon GC, Heinhorst S, Kerfeld CA: Carboxysomal carbonic anhydrases: structure and role in microbial CO2 fixation. Biochim Biophys Acta 2010;1804:382-392.
[PubMed]
7.
Chen P, Andersson DI, Roth JR: The control region of the pdu/cob regulon in Salmonella typhimurium. J Bacteriol 1994;176:5474-5482.
[PubMed]
8.
Cheng S, Fan C, Sinha S, Bobik TA: The PduQ enzyme is an alcohol dehydrogenase used to recycle NAD+ internally within the pdu microcompartment of Salmonella enterica. PLoS One 2012;7:e47144.
[PubMed]
9.
Choudhary S, Quin MB, Sanders MA, Johnson ET, Schmidt-Dannert C: Engineered protein nano-compartments for targeted enzyme localization. PLoS One 2012;7:e33342.
[PubMed]
10.
Cot SS, So AK, Espie GS: A multiprotein bicarbonate dehydration complex essential to carboxysome function in cyanobacteria. J Bacteriol 2008;190:936-945.
[PubMed]
11.
Crowley CS, Cascio D, Sawaya MR, Kopstein JS, Bobik TA, Yeates TO: Structural insight into the mechanisms of transport across the Salmonella enterica pdu microcompartment shell. J Biol Chem 2010;285:37838-37846.
[PubMed]
12.
Crowley CS, Sawaya MR, Bobik TA, Yeates TO: Structure of the PduU shell protein from the Pdu microcompartment of Salmonella. Structure 2008;16:1324-1332.
[PubMed]
13.
Dryden KA, Crowley CS, Tanaka S, Yeates TO, Yeager M: Two-dimensional crystals of carboxysome shell proteins recapitulate the hexagonal packing of three-dimensional crystals. Protein Sci 2009;18:2629-2635.
[PubMed]
14.
English RS, Lorbach SC, Qin X, Shively JM: Isolation and characterization of a carboxysome shell gene from Thiobacillus neapolitanus. Mol Microbiol 1994;12:647-654.
[PubMed]
15.
Fan C, Bobik TA: The N-terminal region of the medium subunit (PduD) packages adenosylcobalamin-dependent diol dehydratase (PduCDE) into the Pdu microcompartment. J Bacteriol 2011;193:5623-5628.
[PubMed]
16.
Fan C, Cheng S, Liu Y, Escobar CM, Crowley CS, Jefferson RE, Yeates TO, Bobik TA: Short N-terminal sequences package proteins into bacterial microcompartments. Proc Natl Acad Sci USA 2010;107:7509-7514.
[PubMed]
17.
Fan C, Cheng S, Sinha S, Bobik TA: Interactions between the termini of lumen enzymes and shell proteins mediate enzyme encapsulation into bacterial microcompartments. Proc Natl Acad Sci USA 2012;109:14995-15000.
[PubMed]
18.
Finn RD, Tate J, Mistry J, Coggill PC, Sammut SJ, Hotz HR, Ceric G, Forslund K, Eddy SR, Sonnhammer EL, Bateman A: The Pfam protein families database. Nucleic Acids Res 2008;36:D281-D288.
[PubMed]
19.
Havemann GD, Sampson EM, Bobik TA: PduA is a shell protein of polyhedral organelles involved in coenzyme B12-dependent degradation of 1,2-propanediol in Salmonella enterica serovar typhimurium LT2. J Bacteriol 2002;184:1253-1261.
[PubMed]
20.
Heinhorst S, Williams EB, Cai F, Murin CD, Shively JM, Cannon GC: Characterization of the carboxysomal carbonic anhydrase CsoSCA from Halothiobacillus neapolitanus. J Bacteriol 2006;188:8087-8094.
[PubMed]
21.
Heldt D, Frank S, Seyedarabi A, Ladikis D, Parsons JB, Warren MJ, Pickersgill RW: Structure of a trimeric bacterial microcompartment shell protein, EtuB, associated with ethanol utilization in Clostridium kluyveri. Biochem J 2009;423:199-207.
[PubMed]
22.
Jensen GJ, Briegel A: How electron cryotomography is opening a new window onto prokaryotic ultrastructure. Curr Opin Struct Biol 2007;17:260-267.
[PubMed]
23.
Jorda J, Lopez D, Wheatley NM, Yeates TO: Using comparative genomics to uncover new kinds of protein-based metabolic organelles in bacteria. Protein Sci 2013;22:179-195.
[PubMed]
24.
Kerfeld CA, Heinhorst S, Cannon GC: Bacterial microcompartments. Annu Rev Microbiol 2010;64:391-408.
[PubMed]
25.
Kerfeld CA, Sawaya MR, Tanaka S, Nguyen CV, Phillips M, Beeby M, Yeates TO: Protein structures forming the shell of primitive bacterial organelles. Science 2005;309:936-938.
[PubMed]
26.
Kinney JN, Salmeen A, Cai F, Kerfeld CA: Elucidating essential role of conserved carboxysomal protein CcmN reveals common feature of bacterial microcompartment assembly. J Biol Chem 2012;287:17729-17736.
[PubMed]
27.
Klein MG, Zwart P, Bagby SC, Cai F, Chisholm SW, Heinhorst S, Cannon GC, Kerfeld CA: Identification and structural analysis of a novel carboxysome shell protein with implications for metabolite transport. J Mol Biol 2009;392:319-333.
[PubMed]
28.
Kofoid E, Rappleye C, Stojiljkovic I, Roth JR: The 17-gene ethanolamine (eut) operon of Salmonella typhimurium encodes five homologues of carboxysome shell proteins. J Bacteriol 1999;181:5317-5329.
[PubMed]
29.
Long BM, Badger MR, Whitney SM, Price GD: Analysis of carboxysomes from Synechococcus PCC7942 reveals multiple Rubisco complexes with carboxysomal proteins CcmM and CcaA. J Biol Chem 2007;282:29323-29335.
[PubMed]
30.
Ludwig M, Sultemeyer D, Price GD: Isolation of ccmKLMN genes from the marine cyanobacterium, Synechococcus sp pcc7002 (cyanobacteria), and evidence that CcmM is essential for carboxysome assembly. J Phycol 2000;36:1109-1118.
31.
Menon BB, Dou Z, Heinhorst S, Shively JM, Cannon GC: Halothiobacillus neapolitanus carboxysomes sequester heterologous and chimeric RubisCO species. PLoS One 2008;3:e3570.
[PubMed]
32.
Pang A, Liang M, Prentice MB, Pickersgill RW: Substrate channels revealed in the trimeric Lactobacillus reuteri bacterial microcompartment shell protein PduB. Acta Crystallogr D Biol Crystallogr 2012;68:1642-1652.
[PubMed]
33.
Pang A, Warren MJ, Pickersgill RW: Structure of PduT, a trimeric bacterial microcompartment protein with a 4Fe-4S cluster-binding site. Acta Crystallogr D Biol Crystallogr 2011;67:91-96.
[PubMed]
34.
Parsons JB, Frank S, Bhella D, Liang M, Prentice MB, Mulvihill DP, Warren MJ: Synthesis of empty bacterial microcompartments, directed organelle protein incorporation, and evidence of filament-associated organelle movement. Mol Cell 2010;38:305-315.
[PubMed]
35.
Pena KL, Castel SE, de Araujo C, Espie GS, Kimber MS: Structural basis of the oxidative activation of the carboxysomal γ-carbonic anhydrase, CcmM. Proc Natl Acad Sci USA 2010;107:2455-2460.
[PubMed]
36.
Penrod JT, Roth JR: Conserving a volatile metabolite: a role for carboxysome-like organelles in Salmonella enterica. J Bacteriol 2006;188:2865-2874.
[PubMed]
37.
Petit E, LaTouf WG, Coppi MV, Warnick TA, Currie D, Romashko I, Deshpande S, Haas K, Alvelo-Maurosa JG, Wardman C, Schnell DJ, Leschine SB, Blanchard JL: Involvement of a bacterial microcompartment in the metabolism of fucose and rhamnose by clostridium phytofermentans. PLoS One 2013;8:e54337.
[PubMed]
38.
Price GD, Howitt SM, Harrison K, Badger MR: Analysis of a genomic DNA region from the cyanobacterium Synechococcus sp. Strain PCC7942 involved in carboxysome assembly and function. J Bacteriol 1993;175:2871-2879.
[PubMed]
39.
Rondon MR, Horswill AR, Escalante-Semerena JC: DNA polymerase I function is required for the utilization of ethanolamine, 1,2-propanediol, and propionate by Salmonella typhimurium LT2. J Bacteriol 1995a;177:7119-7124.
[PubMed]
40.
Rondon MR, Kazmierczak R, Escalante-Semerena JC: Glutathione is required for maximal transcription of the cobalamin biosynthetic and 1,2-propanediol utilization (cob/pdu) regulon and for the catabolism of ethanolamine, 1,2-propanediol, and propionate in Salmonella typhimurium LT2. J Bacteriol 1995b;177:5434-5439.
[PubMed]
41.
Sagermann M, Ohtaki A, Nikolakakis K: Crystal structure of the EutL shell protein of the ethanolamine ammonia lyase microcompartment. Proc Natl Acad Sci USA 2009;106:8883-8887.
[PubMed]
42.
Samborska B, Kimber MS: A dodecameric CcmK2 structure suggests beta-carboxysomal shell facets have a double-layered organization. Structure 2012;20:1353-1362.
[PubMed]
43.
Sampson EM, Bobik TA: Microcompartments for B12-dependent 1,2-propanediol degradation provide protection from DNA and cellular damage by a reactive metabolic intermediate. J Bacteriol 2008;190:2966-2971.
[PubMed]
44.
Schmid MF, Paredes AM, Khant HA, Soyer F, Aldrich HC, Chiu W, Shively JM: Structure of Halothiobacillus neapolitanus carboxysomes by cryo-electron tomography. J Mol Biol 2006;364:526-535.
[PubMed]
45.
Scott KP, Martin JC, Campbell G, Mayer CD, Flint HJ: Whole-genome transcription profiling reveals genes up-regulated by growth on fucose in the human gut bacterium ‘Roseburia inulinivorans'. J Bacteriol 2006;188:4340-4349.
[PubMed]
46.
Shively JM, Ball F, Brown DH, Saunders RE: Functional organelles in prokaryotes: polyhedral inclusions (carboxysomes) of Thiobacillus neapolitanus. Science 1973;182:584-586.
[PubMed]
47.
Stojiljkovic I, Baeumler AJ, Heffron F: Ethanolamine utilization in Salmonella typhimurium: nucleotide sequence, protein expression, and mutational analysis of the cchA cchB eutE eutJ eutG eutH gene cluster. J Bacteriol 1995;177:1357-1366.
[PubMed]
48.
Takenoya M, Nikolakakis K, Sagermann M: Crystallographic insights into the pore structures and mechanisms of the EutL and EutM shell proteins of the ethanolamine-utilizing microcompartment of Escherichia coli. J Bacteriol 2010;192:6056-6063.
[PubMed]
49.
Tanaka S, Kerfeld CA, Sawaya MR, Cai F, Heinhorst S, Cannon GC, Yeates TO: Atomic-level models of the bacterial carboxysome shell. Science 2008;319:1083-1086.
[PubMed]
50.
Tanaka S, Sawaya MR, Phillips M, Yeates TO: Insights from multiple structures of the shell proteins from the β-carboxysome. Protein Sci 2009;18:108-120.
[PubMed]
51.
Tanaka S, Sawaya MR, Yeates TO: Structure and mechanisms of a protein-based organelle in Escherichia coli. Science 2010;327:81-84.
[PubMed]
52.
Tsai Y: Diffusion accessibility. 2009. http://nihserver.mbi.ucla.edu/diff_acc/.
53.
Tsai Y, Sawaya MR, Cannon GC, Cai F, Williams EB, Heinhorst S, Kerfeld CA, Yeates TO: Structural analysis of CsoS1A and the protein shell of the Halothiobacillus neapolitanus carboxysome. PLoS Biol 2007;5:e144.
[PubMed]
54.
Wheatley NM, Gidaniyan SD, Liu Y, Cascio D, Yeates TO: Bacterial microcompartment shells of diverse functional types possess pentameric vertex proteins. Protein Sci 2013;22:660-665.
[PubMed]
55.
Yeates TO: Algorithms for evaluating the long-range accessibility of protein surfaces. J Mol Biol 1995;249:804-815.
[PubMed]
56.
Yeates TO, Crowley CS, Tanaka S: Bacterial microcompartment organelles: protein shell structure and evolution. Annu Rev Biophys 2010;39:185-205.
[PubMed]
57.
Yeates TO, Thompson MC, Bobik TA: The protein shells of bacterial microcompartment organelles. Curr Opin Struct Biol 2011;21:223-231.
[PubMed]
58.
Yeates TO, Tsai Y, Tanaka S, Sawaya MR, Kerfeld CA: Self-assembly in the carboxysome: a viral capsid-like protein shell in bacterial cells. Biochem Soc Trans 2007;35:508-511.
[PubMed]
You do not currently have access to this content.